Trong mặt phẳng tọa độ Oxy, nửa đường tròn tâm O nằm phía trên trục hoành bán kính R = 1 được gọi là nửa đường tròn đơn vị (h.2.2). Nếu cho trước một góc nhọn α thì ta có thể xác định một điểm M duy nhất trên nửa đường tròn đơn vị sao cho góc xOM = α .Giả sử điểm M có tọa độ (xo; yo).
Hãy chứng tỏ rằng sinα = yo, cosα = xo, \(\tan \alpha = {{{y_0}} \over {{x_0}}};\,\cot \alpha = {{{x_0}} \over {{y_0}}}\)