Bài 1: Ta có : \(\left\{ \matrix{ \sqrt {2x} + y = 1 \hfill \cr x - y = \sqrt 2 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ y = x - \sqrt 2 \hfill \cr \sqrt {2x} + y = 1 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{ y = x - \sqrt 2 \hfill \cr \sqrt {2x} + x - \sqrt 2 = 1 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{ x = 1 \hfill \cr y = 1 - \sqrt 2 \hfill \cr} \right.\)
Hệ có nghiệm duy nhất : \(( 1; 1 - \sqrt 2 )\).
Bài 2: Từ (2) \( \Rightarrow y = - mx - 3.\) Thế y vào phương trình (1), ta được :
\(3x - 2\left( { - mx - 3} \right) = 6 \)
\(\Leftrightarrow x\left( {3 + 2m} \right) = 0\,\,\,\,\,\left( * \right)\)
Hệ có vô số nghiệm khi và chỉ khi phương trình (*) có vô số nghiệm
\( \Leftrightarrow 3 + 2m = 0 \Leftrightarrow m = - {3 \over 2}.\)
Chú ý : Có thể xét điều kiện để hai đường thẳng trùng nhau.