Bài 1 trang 121 SGK Giải tích 12

Tính diện tích hình phẳng giới hạn bởi các đường:

a) \(y={x^2},y =x + 2\);   

b) \(y = |lnx|, y = 1\);

c) \(y = {\left( x-6 \right)}^2,y = 6x-{x^2}\) 

Lời giải

a) Phương trình hoành độ giao điểm của hai đồ thị là: 

\(f(x) = x^2-x -2 =0 ⇔(x+1)(x-2)=0 \\ ⇔\left[ \begin{array}{l}x + 1=0\\x - 2=0\end{array} \right. ⇔ \left[ \begin{array}{l}x = - 1\\x = 2\end{array} \right..\) 

Diện tích hình phẳng cần tìm là:

\(S=\int_{-1}^{2}\left |x^{2}- x- 2 \right |dx = \left | \int_{-1}^{2}\left (x^{2}- x- 2 \right ) dx \right |\)

\(=\left |\dfrac{x^{3}}{3}-\dfrac{x^{2}}{2}-2x|_{-1}^{2} \right |=\left |\dfrac{8}{3}-2-4-(-\dfrac{1}{3}-\dfrac{1}{2}+2) \right |\) \(=\dfrac{9}{2}\) (đvdt).

b) Phương trình hoành độ giao điểm của hai đồ thị là:

\(f(x) = 1 - |\ln x| = 0  ⇔ \ln x = ± 1\) \(⇔\left[ \begin{array}{l}x = e\\x =  \dfrac{1}{e}\end{array} \right..\) 

    

Ta có:  \(y = |\ln x| = \ln x\)  nếu  \(\ln x ≥ 0\),  tức là  \(x ≥ 1\).

hoặc  \(y = |\ln x| = - \ln x\)  nếu  \(\ln x < 0\), tức là  \(0 < x < 1\).

Dựa vào đồ thị hàm số vẽ ở hình trên ta có diện tích cần tìm là :  

\(S=\int_{\frac{1}{e}}^{e}|1- |\ln x||dx =\int_{\frac{1}{e}}^{1}(1+\ln x)dx +\int_{1}^{e}(1-\ln x)dx\)

\(= x|_{\frac{1}{e}}^{1}+\int_{\frac{1}{e}}^{1}\ln xdx +x|_{1}^{e}-\int_{1}^{e}\ln xdx\)

\(=-\dfrac{1}{e}+e+\int_{\frac{1}{e}}^{1}\ln x dx-\int_{1}^{e}\ln xdx\)

Tính \(\int {\ln xdx} \) ta có:

Đặt \(\left\{ \begin{array}{l}u = \ln x\\dv = dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{x}dx\\v = x\end{array} \right.\)

Do đó  \(∫\ln xdx = x\ln x - ∫dx = x\ln x  –  x  + C\), thay vào trên ta được:

\(S=e-\dfrac{1}{e}+(x\ln x-x)|_{\frac{1}{e}}^{1}- (x\ln x-x)|_{1}^{e}=e+\dfrac{1}{e}-2\) (đvdt).

c) Phương trình hoành độ giao điểm của hai đồ thị là:

\(f\left( x \right) =6x-{x^2}-{\left( {x -6} \right)^2} = - 2({x^2}-9x+ 18)=0\)

\(⇔  - 2({x^2}-9x+ 18) ⇔ (x-3)(x-6)=0\\⇔ \left[ \begin{array}{l}x - 3=0\\x - 6=0\end{array} \right.⇔\left[ \begin{array}{l}x = 3\\x = 6\end{array} \right..\)

Diện tích cần tìm là:

\(S=\int_{3}^{6}|-2(x^{2}-9x+18)|dx\) \(=|2\int_{3}^{6}(x^{2}-9x+18)dx|\)

\(=\left |2(\dfrac{x^{3}}{3}-\dfrac{9}{2}x^{2}+18x)|_{3}^{6} \right | \\ =45-36=9 \, \, (đvdt)\).


Bài Tập và lời giải

Câu 1 trang 10 SGK Công Nghệ 8
Thế nào là hình chiếu của một vật thể ?

Xem lời giải

Câu 2 trang 10 SGK Công Nghệ 8
Có các phép chiếu nào ? mỗi phép chiếu có đặc điểm gì ?

Xem lời giải

Câu 3 trang 10 SGK Công Nghệ 8
Tên gọi và vị trí của các hình chiếu ở trên bản vẽ như thế nào ?

Xem lời giải