Ta có: \(y'=2x.\)
Phương trình tiếp tuyến của đồ thị hàm số \(y=x^2+1\) tại \(M(2;\, \, 5)\) là: \(y = y'\left( 2 \right)\left( {x - 2} \right) + 5 = 4\left( {x - 2} \right) + 5 = 4x - 3.\)
Phương trình tiếp tuyến là \(y = 4x - 3\).
Phương trình hoành độ giao điểm của đồ thị hàm số với tiếp tuyến là: \({x^2} + 1 =4x - 3 \Leftrightarrow {x^2} - 4x + 4= 0 \\ ⇔ (x-2)^2=0 ⇔ x = 2.\)
Do đó diện tích phải tìm là:
\(S=\int_{0}^{2}|x^{2}+1 -4x+3|dx \) \(=\int_{0}^{2}(x^{2}-4x+4)dx\)
\(=\left. {\left( {\dfrac{{{x^3}}}{3} - \dfrac{{4{x^2}}}{2} + 4x} \right)} \right|_0^2 \)
\(=\dfrac{8}{3} \, \, (đvdt)\).