a) Ta có: \(\cos 2(x + k π) = \cos (2x + k2 π) = \cos 2x\).
_ Từ kết quả trên ta suy ra hàm số \(y = cos 2x\) là hàm số tuần hoàn có chu kì là \(π\).
_ Do đó, ta chỉ cần vẽ đồ thị hàm số \(y = cos2x\) trên \([0, π]\) và tịnh tiến nó song song với trục \(0x\) các đoạn có độ dài là \(π\).
Bảng giá trị đặc biệt
\(x\)
|
\(0\)
|
\({\pi \over 4}\) |
\({\pi \over 2}\) |
\({{3\pi } \over 4}\)
|
\(π\)
|
\(\cos 2x\)
|
\(1\)
|
\(0\)
|
\(-1\)
|
\(0\)
|
\(1\)
|
Đồ thị hàm số :
b) Ta có: \({x_0} = {\pi \over 3} \Rightarrow {y_0} = \cos {{2\pi } \over 3} = - {1 \over 2}\)
Ta lại có:
\(\eqalign{
& f'(x) = - 2\sin 2x \cr
& \Rightarrow f'({\pi \over 3}) = - 2\sin {{2\pi } \over 3} = - \sqrt 3 \cr} \)
Vậy phương trình tiếp tuyến cần tìm là:
\(y + {1 \over 2} = - \sqrt 3 (x - {\pi \over 3}) \Leftrightarrow y = - \sqrt 3 x + {{\pi \sqrt 3 } \over 3} - {1 \over 2}\)
c) Ta có:
\(|cos 2x| ≤ 1\) nên \(1 – cos 2x ≥ 0 ,∀ x ∈ \mathbb R\).
\( \Rightarrow \dfrac{{1 - \cos 2x}}{{1 + {{\cos }^2}2x}} \ge 0\,\,\forall x \in R\)
Do đó, tập xác định của hàm số \(z\) là \(\mathbb R\).