\(\cos(x+3) =\dfrac{1}{3}\)
\(\Leftrightarrow x+3 = \pm\arccos\dfrac{1}{3}+k2\pi ,k \in \mathbb{Z}\)
Vậy phương trình có nghiệm là
\(\Leftrightarrow x =-3 \pm\arccos\dfrac{1}{3}+k2\pi ,k \in \mathbb{Z}\)
LG câu b
Phương pháp:
Phương trình \(\cos x=a\)
Nếu \(|a|>1\) phương trình vô nghiệm
Nếu \(|a|\le 1\) có \(\beta^o\) thỏa mãn \(\cos\beta^o=a\)
trong đó \(\beta^o=\arccos a\)
Khi đó phương trình có nghiệm là \(x=\pm\beta^o+k{360}^o ,k \in \mathbb{Z}\)
Ta có: \(\dfrac{\sqrt{3}}{2}=\cos {30}^o\)
Khi đó: \(\cos(3x-45^o)=\cos {30}^o\)
\(\Leftrightarrow 3x-{45}^o = \pm{30}^o+k{360}^o ,k \in \mathbb{Z}\)
\(\Leftrightarrow \left[ \begin{array}{l} x= {25}^o+k{120}^o ,k \in \mathbb{Z}\\x= {5}^o+k{120}^o ,k \in\mathbb{Z}\end{array} \right. \)
Vậy nghiệm của phương trình là:
\(x= {25}^o+k{120}^o ,k \in \mathbb{Z}\)
và \( x= {5}^o+k{120}^o ,k \in\mathbb{Z} \)
LG câu c
Phương pháp:
Phương trình \(\cos x=a\)
Nếu \(|a|>1\) phương trình vô nghiệm
Nếu \(|a|\le 1\) khi đó phương trình có nghiệm là
\(x=\pm\arccos a+k2\pi ,k \in \mathbb{Z}\)
Ta có: \(-\dfrac{1}{2}=\cos(\arccos-\dfrac{1}{2})\)
\(=\cos (\dfrac{2\pi}{3})\)
Khi đó: \(2x+\dfrac{\pi}{3}=\pm\dfrac{2\pi}{3}+k2\pi ,k\in\mathbb{Z}\)
\(\Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi}{6}+k\pi ,k \in \mathbb{Z}\\x=-\dfrac{\pi}{2}+k\pi ,k \in \mathbb{Z}\end{array} \right. \)
Vậy phương trình có các nghiệm là:
\(x = \dfrac{\pi}{6}+k\pi ,k \in \mathbb{Z}\)
và \(x=-\dfrac{\pi}{2}+k\pi ,k \in \mathbb{Z}\)
LG câu d
Phương pháp:
Sử dụng công thức \(f(x)g(x)=0\)
\(\Leftrightarrow\left[ \begin{array}{l} f(x) = 0\\g(x) = 0\end{array} \right.\)
Phương trình \(\cos x=a\)
Nếu \(|a|>1\) phương trình vô nghiệm
Nếu \(|a|\le 1\) khi đó phương trình có nghiệm là
\(x=\pm\arccos a+k2\pi ,k \in \mathbb{Z}\)
Ta có: \((2+\cos x)(3\cos2x-1)=0\)
\(\Leftrightarrow\left[ \begin{array}{l} 2+\cos x = 0\\3\cos2x-1 = 0\end{array} \right.\)
Nếu \(\cos x = -2\) (vô nghiệm)
Nếu \(\cos 2x = \dfrac{1}{3}\)
\(\Leftrightarrow 2x = \pm\arccos\dfrac{1}{3}+k2\pi ,k\in\mathbb{Z}\)
\(\Leftrightarrow x = \pm\dfrac{1}{2}\arccos\dfrac{1}{3}+k\pi ,k\in\mathbb{Z}\)
Vậy nghiệm của phương trình là:
\(x = \pm\dfrac{1}{2}\arccos\dfrac{1}{3}+k\pi ,k\in\mathbb{Z}\)