Bài 1.56 trang 41 SBT đại số và giải tích 11

Đề bài

Nghiệm dương nhỏ nhất của phương trình \(\sqrt{3}\tan x+\sqrt{3}\cot x-4=0\) là

A. \(\dfrac{\pi}{6}\)

B. \(\dfrac{\pi}{3}\)

C. \(\dfrac{\pi}{4}\)

D. \(\dfrac{\pi}{5}\).

Lời giải

ĐKXĐ: \(\cos x\ne 0\) và \(\sin x\ne 0\).

Ta có: \(\sqrt{3}\tan x+\sqrt{3}\cot x-4=0\)

\(\Leftrightarrow \sqrt{3}\tan x+\sqrt{3}\dfrac{1}{\tan x}-4=0\)

\(\Leftrightarrow \sqrt{3}{\tan}^2 x+\sqrt{3}-4\tan x=0\)

\( \Leftrightarrow \left[ \begin{array}{l}\tan x=\sqrt{3} \text{(thỏa mãn)}\\\tan x=\dfrac{1}{\sqrt{3}}\text{(thỏa mãn)}\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x=\dfrac{\pi}{3}+k\pi,k\in\mathbb{Z} \\ x=\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\end{array} \right.\)

Với \( x=\dfrac{\pi}{3}+k\pi \) nghiệm dương nhỏ nhất là \(\dfrac{\pi}{3}\) tại \(k=0\)

Với \( x=\dfrac{\pi}{6}+k\pi \) nghiệm dương nhỏ nhất là \(\dfrac{\pi}{6}\) tại \(k=0\)

Vì \(\dfrac{\pi}{6}<\dfrac{\pi}{3}\) nên nghiệm dương nhỏ nhất là \(\dfrac{\pi}{6}\)

Đáp án: A.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”