Đặt \(t=\cos x-\sin x\)
\(\cos x-\sin x=\sqrt{2}\cos\left({x+\dfrac{\pi}{4}}\right)\)
Do \(-1\le\cos\left({x+\dfrac{\pi}{4}}\right)\le 1\) nên \(-\sqrt{2}\le\sqrt{2}\cos\left({x+\dfrac{\pi}{4}}\right)\le \sqrt{2}\)
Khi đó \(-\sqrt{2}\le t\le \sqrt{2}\)
Ta có \(t^2={\cos}^2 x-2\cos x\sin x+{\sin}^2 x\)
\(=1-2\cos x\sin x\)
Suy ra \(\sin x\cos x=\dfrac{1-t^2}{2}\) thay vào phương trình ta được
\(3t-\dfrac{1-t^2}{2}=-3\)
\(\Leftrightarrow 6t-1+t^2=-6\)
\(\Leftrightarrow t^2+6t+5=0\)
\( \Leftrightarrow \left[ \begin{array}{l} t=-5<-\sqrt{2}\text{(loại)}\\ t =-1\end{array} \right.\)
Với \(t=-1\Leftrightarrow \cos x-\sin x=-1\)
\(\Leftrightarrow \sqrt{2}\cos(\dfrac{\pi}{4}+x)=-1\)
\(\Leftrightarrow \cos(\dfrac{\pi}{4}+x)=\cos\dfrac{3\pi}{4}\)
\(\Leftrightarrow \dfrac{\pi}{4}+x=\pm\dfrac{3\pi}{4}+k2\pi,k\in\mathbb{Z}\)
\( \Leftrightarrow \left[ \begin{array}{l} x =\dfrac{\pi}{2}+k2\pi,k\in\mathbb{Z}\\ x=-\pi+k2\pi,k\in\mathbb{Z}\end{array} \right.\)
Vậy phương trình có nghiệm là \( x=k2\pi,k\in\mathbb{Z}\) và \( x =-\pi+k2\pi=\pi+l2\pi,k,l\in\mathbb{Z} \)
Đáp án: A.