Bài 2 trang 126 SGK Giải tích 12

a) Phát biểu định nghĩa tích phân của hàm số \(f(x)\) trên một đoạn

b) Nêu các tính chất của tích phân. Cho ví dụ minh họa.

Lời giải

a) Cho hàm số \(f(x)\) liên tục trên \([a, b]\).

Giả sử \(F(x)\) là một nguyên hàm của \(f(x)\) trên \([a, b]\).

Hiệu số \(F(b) – F(a)\) được gọi là tích phân từ \(a\) đến \(b\) (hay tích phân xác định trên đoạn \([a, b]\) của hàm số \(f(x)\).

Kí hiệu \(\int_a^b {f(x)dx} ={\rm{[F(x)]}}{\left| {^b} \right._a} = F(b) – F(a) (1)\)

(Công thức Newton – Leibniz)

b) Tính chất 1: \(\int_a^b {k.f(x)dx = k\int_a^b {f(x)dx} } \) ( \(k\) là hằng số)

Tính chất 2: \(\int_a^b {{\rm{[f(x)}} \pm {\rm{g(x)]dx}} = \int_a^b {f(x)dx \pm } } \int_a^b {g(x)dx} \)

Tính chất 3: \(\int_a^b {f(x)dx = \int_a^c {f(x)dx + \int_c^b {f(x)dx} } } \) \((a < c < b).\)

Ví dụ:

a) Biết \(\int_5^9 {f(x)dx = 2.} \) Hãy tính \(\int_5^9 {( - 5).f(x)dx}. \)

b) Biết \(\int_5^9 {f(x)dx = 2} \) và \(\int_5^9 {g(x)dx = 4} .\)  Hãy tính \(\int_5^9 {{\rm{[f(x) + g(x)]dx}}}. \)

c) Biết \(\int_5^9 {f(x)dx = 2} \) và \(\int_9^{10} {f(x)dx = 3} .\)  Hãy tính \(\int_5^{10} {f(x)dx}. \)

Giải

a) Ta có: \(\int_5^9 {( - 5).f(x)dx = ( - 5)\int_5^9 {f(x)dx = ( - 5).2 =  - 10} }. \)

b) Ta có: \(\int_5^9 {{\rm{[f(x) + g(x)]dx}} = \int_5^9 {f(x)dx + \int_5^9 {g(x)dx = 2 + 4 = 6} } } .\)

c) Ta có: \(\int_5^{10} {f(x)dx = \int_5^9 {f(x)dx + \int_9^{10} {f(x)dx = 2 + 3 = 5} } }. \)


Bài Tập và lời giải

Câu 1 trang 30 SGK Công Nghệ 8
Thế nào là bản vẽ kỹ thuật ?

Xem lời giải

Câu 2 trang 30 SGK Công Nghệ 8
Bản vẽ cơ khí và bản vẽ xây dựng dùng trong công việc gì ?

Xem lời giải

Câu 3 trang 30 SGK Công Nghệ 8
Thế nào là hình cắt ? Hình cắt dùng để làm gì ?

Xem lời giải