a) Cho hàm số \(f(x)\) liên tục trên \([a, b]\).
Giả sử \(F(x)\) là một nguyên hàm của \(f(x)\) trên \([a, b]\).
Hiệu số \(F(b) – F(a)\) được gọi là tích phân từ \(a\) đến \(b\) (hay tích phân xác định trên đoạn \([a, b]\) của hàm số \(f(x)\).
Kí hiệu \(\int_a^b {f(x)dx} ={\rm{[F(x)]}}{\left| {^b} \right._a} = F(b) – F(a) (1)\)
(Công thức Newton – Leibniz)
b) Tính chất 1: \(\int_a^b {k.f(x)dx = k\int_a^b {f(x)dx} } \) ( \(k\) là hằng số)
Tính chất 2: \(\int_a^b {{\rm{[f(x)}} \pm {\rm{g(x)]dx}} = \int_a^b {f(x)dx \pm } } \int_a^b {g(x)dx} \)
Tính chất 3: \(\int_a^b {f(x)dx = \int_a^c {f(x)dx + \int_c^b {f(x)dx} } } \) \((a < c < b).\)
Ví dụ:
a) Biết \(\int_5^9 {f(x)dx = 2.} \) Hãy tính \(\int_5^9 {( - 5).f(x)dx}. \)
b) Biết \(\int_5^9 {f(x)dx = 2} \) và \(\int_5^9 {g(x)dx = 4} .\) Hãy tính \(\int_5^9 {{\rm{[f(x) + g(x)]dx}}}. \)
c) Biết \(\int_5^9 {f(x)dx = 2} \) và \(\int_9^{10} {f(x)dx = 3} .\) Hãy tính \(\int_5^{10} {f(x)dx}. \)
Giải
a) Ta có: \(\int_5^9 {( - 5).f(x)dx = ( - 5)\int_5^9 {f(x)dx = ( - 5).2 = - 10} }. \)
b) Ta có: \(\int_5^9 {{\rm{[f(x) + g(x)]dx}} = \int_5^9 {f(x)dx + \int_5^9 {g(x)dx = 2 + 4 = 6} } } .\)
c) Ta có: \(\int_5^{10} {f(x)dx = \int_5^9 {f(x)dx + \int_9^{10} {f(x)dx = 2 + 3 = 5} } }. \)