a)
\(y' =\left (2\sqrt x {\mathop{\rm sinx}\nolimits} - {{\cos x} \over x}\right)'\)
\(\eqalign{
& = 2{1 \over {2\sqrt x }}\sin x + 2\sqrt x\cos x - {{ - x\sin x - \cos x} \over {{x^2}}} \cr
& = {{x\sqrt x \sin x + 2{x^2}\sqrt x\cos x + x\sin x + \cos x} \over {{x^2}}} \cr
& = {{x(\sqrt x + 1)\sin x + (2{x^2}\sqrt x + 1)cosx} \over {{x^2}}} \cr} \)
\(\begin{array}{l}b)\,\,y' = \dfrac{{ - 3\sin x\left( {2x + 1} \right) - 2.3\cos x}}{{{{\left( {2x + 1} \right)}^2}}}\\\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{ - 6x\sin x - 3\sin x - 6\cos x}}{{{{\left( {2x + 1} \right)}^2}}}\end{array}\)