Bài 2 trang 176 SGK Đại số và Giải tích 11

Tính đạo hàm của các hàm số sau

a) \(y = 2\sqrt x {\mathop{\rm sinx}\nolimits}  - {{\cos x} \over x}\)

b) \(y = {{3\cos x} \over {2x + 1}}\)

c) \(y = {{{t^2} + 2\cos t} \over {\sin t}}\)

d) \(y = {{2\cos \varphi  - \sin \varphi } \over {3\sin \varphi  + \cos \varphi }}\)

e) \(y = {{\tan x} \over {\sin x + 2}}\)

f) \(y = {{\cot x} \over {2\sqrt x  - 1}}\)

Lời giải

a)

\(y' =\left (2\sqrt x {\mathop{\rm sinx}\nolimits}  - {{\cos x} \over x}\right)'\)

\(\eqalign{
& = 2{1 \over {2\sqrt x }}\sin x + 2\sqrt x\cos x - {{ - x\sin x - \cos x} \over {{x^2}}} \cr
& = {{x\sqrt x \sin x + 2{x^2}\sqrt x\cos x + x\sin x + \cos x} \over {{x^2}}} \cr
& = {{x(\sqrt x + 1)\sin x + (2{x^2}\sqrt x + 1)cosx} \over {{x^2}}} \cr} \)

\(\begin{array}{l}b)\,\,y' = \dfrac{{ - 3\sin x\left( {2x + 1} \right) - 2.3\cos x}}{{{{\left( {2x + 1} \right)}^2}}}\\\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{ - 6x\sin x - 3\sin x - 6\cos x}}{{{{\left( {2x + 1} \right)}^2}}}\end{array}\)