Giả sử \(a\) và \(b\) là hai đường thẳng chéo nhau có hình chiếu là \(a’\) và \(b’\). Nếu mặt phẳng \((a, a’)\) và mặt phẳng \((b, b’)\) song song với nhau thì \(a'\parallel b'\). Vậy hình chiếu song song của hai đường thẳng chéo nhau có thể song song.
Nếu \(a\) và \(b\) là hai đường thẳng cắt nhau tại \(O\) và hình chiếu của \(O\) là \(O’\) thì \(O' \in a'\) và \(O' \in b'\) tức là \(a’\) và \(b’\) có điểm chung. Vậy hình chiếu song song của hai đường thẳng cắt nhau không thể song song được.