a) - Tập xác định: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).
- Hàm số đã cho là hàm số lẻ.
\(y' = - 3{x^{ - 4}} = - {3 \over {{x^4}}}\)
Ta có: \(y' < 0,\forall x \in R\backslash {\rm{\{ }}0\}\) nên hàm số luôn nghịch biến trên các khoảng xác định.
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to + \infty } y = 0,\mathop {\lim}\limits_{x \to {0^ + }} y = + \infty ,\mathop {\lim }\limits_{x \to {0^ - }} y = - \infty \)
Đồ thị có tiệm cận ngang là trục hoành, tiệm cận đứng là trục tung.
- Bảng biến thiên:
Đồ thị của hàm số có tâm đối xứng là gốc tọa độ.
b) Tập xác định: \(D = (0; + \infty )\); \(y' = - {1 \over 2}{x^{ - {3 \over 2}}}\)
Vì \(y'<0,\forall x\in D\) nên hàm số nghịch biến.
\(\mathop {\lim }\limits_{x \to {0^ + }} y = + \infty ,\mathop {\lim }\limits_{x \to + \infty } y = 0\)
Đồ thị có tiệm cận đứng là trục tung, tiệm cận ngang là trục hoành.
Bảng biến thiên:
Đồ thị:
c) Tập xác định: \(D = (0; + \infty )\); \(y' = \dfrac{\pi }{4}{x^{\frac{\pi }{4} - 1}}\)
Vì \(y' > 0,\forall x \in D\) nên hàm số đòng biến trên \(D\).
\(\mathop {\lim }\limits_{x \to {0^ + }} y = 0,\mathop {\lim }\limits_{x \to + \infty } y = + \infty \)
Đồ thị không có tiệm cận.
Bảng biến thiên:
Đồ thị: