a) Đặt \({B_n} = 2{n^3} - 3{n^2} + n,\)
+) Với \(n = 1\) ta có: \({B_1} = 0 \vdots 6\)
+) Giả sử đã có \({B_k} = 2{k^3} - 3{k^2} + k\) chia hết cho 6. Ta phải chứng minh \({B_{k + 1}} = 2{\left( {k + 1} \right)^3} - 3{\left( {k + 1} \right)^2} + k + 1\) chia hết cho 6.
Thật vậy, \(2{\left( {k + 1} \right)^3} - 3{\left( {k + 1} \right)^2} + k\) \( = 2.\left( {{k^3} + 3{k^2} + 3k + 1} \right)\) \( - 3\left( {{k^2} + 2k + 1} \right) + k + 1\)
\( = \left( {2{k^3} - 3{k^2} + k} \right) + 6{k^2} \vdots 3\) do \(2{k^3} - 3{k^2} + k \vdots 3\) và \(6{k^2} \vdots 3\).
b) Đặt \({A_n} = {11^{n + 1}} + {12^{2n - 1}}.\) Dễ thấy \({A_1} = 133,\) chia hết cho 133.
Giả sử đã có \({A_k} = {11^{k + 1}} + {12^{2k - 1}}\) chia hết cho 133.
Ta có \({A_{k + 1}} = {11^{k + 2}} + {12^{2k + 1}}\) \( = {11.11^{k + 1}} + {12^{2k - 1}}{.12^2}\) \({\rm{ = 11}}{\rm{.1}}{{\rm{1}}^{k + 1}} + {12^{2k - 1}}\left( {11 + 133} \right)\) \( = 11.{A_k} + {133.12^{2k - 1}}\)
Vì \({A_k} \vdots 133\) nên \({A_{k + 1}} \vdots 133.\)