a) Dùng phép thử với \(n = 1,2,3,4\)ta dự đoán: Với \(n \ge 3\) thì bất đẳng thức đúng. Ta sẽ chứng minh điều đó bằng quy nạp.
+) Với \(n = 3,\) hiển nhiên đã có kết quả đúng, vì \({2^3} = 8 > 2.3 + 1 = 7.\)
+) Giả sử bất đẳng thức đúng với \(n = k,\) tức là \({2^k} > 2k + 1{\rm{ (1)}}\)
Ta sẽ chứng minh bất đẳng thức đúng với \(n = k + 1,\) tức là
\({2^{k + 1}} > 2k + 3{\rm{ }}\left( 2 \right)\)
Thật vậy, nhân hai vế của (1) với 2, ta được
\({2^{k + 1}} > 4k + 2 = 2k + 3 + 2k - 1 > 2k + 3.\)
b) Dùng phép thử.
+) Với n từ 1 đến 6, bất đẳng thức đều không đúng. Tuy nhiên không thể vội vàng kết luận bất phương trình vô nghiệm.
+) Nếu thử tiếp ta thấy rằng bất phương trình đúng khi \(n = 7.\) Ta có thể làm tiếp để đi tới dự đoán: Với \(n \ge 7\) thì bất phương trình được nghiệm đúng. Sau đó chứng minh tương tự như câu a).
c) Với \(n = 0,1,2,3\) thì bất đẳng thức không đúng.
Với \(n = 4,5,...\) thì ta thấy bất đẳng thức đúng.
Dự đoán \({3^n} > {2^n} + 7,\forall n \ge 4\).
Thật vậy, với \(n = 4\) thì \(VT = {3^4} > {2^4} + 7.4 = VP\).
Giả sử bđt đúng với \(n = k \ge 4\), nghĩa là \({3^k} > {2^k} + 7k\,\,\left( 1 \right)\).
Ta cần chứng minh \({3^{k + 1}} > {2^{k + 1}} + 7\left( {k + 1} \right)\).
Nhân của hai vế của \(\left( 1 \right)\) với \(3\) ta được \({3.3^k} > {3.2^k} + 21k\) \( \Leftrightarrow {3^{k + 1}} > {3.2^k} + 21k\) \( > {2.2^k} + 7k + 14k\) \( > {2.2^k} + 7k + 7 = {2^{k + 1}} + 7\left( {k + 1} \right)\)
Vậy \(n \ge 4.\)