a)
Xét đường tròn \((O)\) có \(IB,\ IA\) là hai tiếp tuyến lần lượt tại \(B,\ A\)
\(\Rightarrow IB=IA\)
Xét đường tròn \((O')\) có \(IC,\ IA\) là hai tiếp tuyến lần lượt tại \(C,\ A\)
\(\Rightarrow IC=IA\)
\(\Rightarrow IB=IC=IA=\dfrac{1}{2}BC\)
Suy ra \(\Delta{ABC}\) vuông tại \(A\) (tam giác có đường trung tuyến AI ứng với cạnh huyền bằng nửa cạnh đó)
\(\Rightarrow \widehat{BAC}=90^{\circ}\).
b) Xét đường tròn \((O)\) có \(IB,\ IA\) là hai tiếp tuyến lần lượt tại \(B,\ A\)
\(\Rightarrow IO\) là tia phân giác của góc \(BIA \Rightarrow \widehat{I_1}=\widehat{I_2}\)
Xét đường tròn \((O')\) có \(IC,\ IA\) là hai tiếp tuyến lần lượt tại \(C,\ A\)
\(\Rightarrow IO'\) là tia phân giác của góc \(CIA \Rightarrow \widehat{I_3}=\widehat{I_4}\)
Lại có \(\widehat{I_1}+\widehat{I_2}+\widehat{I_3}+\widehat{I_4}=180^o\)
\(\Leftrightarrow \widehat{I_2}+\widehat{I_2}+\widehat{I_3}+\widehat{I_3}=180^o\)
\(\Leftrightarrow 2\widehat{I_2}+2\widehat{I_3}=180^o\)
\(\Leftrightarrow 2(\widehat{I_2}+\widehat{I_3})=180^o\)
\(\Leftrightarrow \widehat{I_2}+\widehat{I_3}=90^o\)
\(\Leftrightarrow \widehat{OIO'}=90^o\)
Cách 2:
Xét đường tròn \((O)\) có \(IB,\ IA\) là hai tiếp tuyến lần lượt tại \(B,\ A\)
\(\Rightarrow IO\) là tia phân giác của góc \(BIA \Rightarrow \widehat{I_1}=\widehat{I_2}\)
Xét đường tròn \((O')\) có \(IC,\ IA\) là hai tiếp tuyến lần lượt tại \(C,\ A\)
\(\Rightarrow IO'\) là tia phân giác của góc \(CIA \Rightarrow \widehat{I_3}=\widehat{I_4}\)
Mà góc \(BIA\) và góc \(AIC\) là hai góc kề bù.
Suy ra \(\widehat{OIO'}=90^{\circ}\) (hai tia phân giác của hai góc kề bù thì vuông góc với nhau).
c) Vì \(IA\) là tiếp tuyến chung của hai đường tròn nên \(IA \bot OO'\).
Xét tam giác \(OIO'\) vuông tại \(I\), áp dụng hệ thức giữa đường cao và hình chiếu trong tam giác vuông, ta có:
\(AI^2=AO.AO' \Rightarrow AI^2=9.4=36\)
\(\Rightarrow AI= \sqrt{36}=6\)
Từ câu a, ta có \(AI=\dfrac{BC}{2} \Rightarrow BC=2.AI=2.6=12\).
Nhận xét. Câu a), b) chỉ là gợi ý để làm câu c). Đối với những bài toán có hai đường tròn tiếp xúc, ta thường vẽ thêm tiếp tuyến chung tại tiếp điểm để xuất hiện yếu tố trung gian giúp cho việc tính toán hoặc chứng minh được thuận lợi.