Bài 84 trang 22 SBT toán 7 tập 1

Chứng minh rằng nếu \({{\rm{a}}^2} = bc\) (với \(a ≠ b\) và \(a ≠ c\)) thì \(\displaystyle {{a + b} \over {a - b}} = {{c + a} \over {c - a}}\)

Lời giải

Ta có \(\displaystyle{a^2} = bc \Rightarrow {a \over c} = {b \over a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\displaystyle {a \over c} = {b \over a} = {{a + b} \over {c + a}} = {{a - b} \over {c - a}}\) (với \(a ≠ b\) và \(a ≠c\))

\(\displaystyle \Rightarrow {{a + b} \over {a - b}} = {{c + a} \over {c - a}}\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”