Đồ thị của hàm số y = f(x) có tiếp tuyến tại các điểm M1, M2 và M3 nên hàm số y = f(x) có đạo hàm tại các điểm x1, x2 và x3. Ta nhận thấy :
+ Tiếp tuyến tại các điểm M1 là một đường thẳng “đi xuống” từ trái sang phải, nên hệ số góc của tiếp tuyến là một số âm, suy ra \(f'\left( {{x_1}} \right) < 0\)
+ Tiếp tuyến tại điểm M2 là một đường thẳng song song với trục hoành nên hệ số góc của tiếp tuyến bằng 0, suy ra \(f'\left( {{x_2}} \right) = 0\)
+ Tiếp tuyến tại điểm M3 là một đường thẳng “đi lên” từ trái sang phải, nên hệ số góc của tiếp tuyến là một số dương, suy ra \(f'\left( {{x_3}} \right) > 0\)