Câu 3 trang 192 SGK Đại số và Giải tích 11 Nâng cao

Dùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x0 (a là hằng số).

a. \(y = ax + 3\)

b. \(y = {1 \over 2}a{x^2}\)

Lời giải

a. \(f(x) = ax + 3\), cho x0 một số gia Δx, ta có:

\(\eqalign{  & \Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)  \cr  &  = a\left( {{x_0} + \Delta x} \right) + 3 - \left( {a{x_0} + 3} \right) = a\Delta x  \cr  &  \Rightarrow {{\Delta y} \over {\Delta x}} = a \Rightarrow f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = a \cr} \)

b.

\(\eqalign{  & f\left( x \right) = {1 \over 2}a{x^2},\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)  \cr  &  = {1 \over 2}a{\left( {{x_0} + \Delta x} \right)^2} - {1 \over 2}ax_0^2  \cr  &  = {1 \over 2}a\Delta x\left( {2{x_0} + \Delta x} \right)  \cr  &  \Rightarrow f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}}  \cr  &  = \mathop {\lim }\limits_{\Delta x \to 0} {1 \over 2}a\left( {2{x_0} + \Delta x} \right) = a{x_0} \cr} \)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”