Bài 1:
a) \(A = 5{{\rm{x}}^2} + 6{{\rm{x}}^3} + {x^3} - {x^2} + 2{{\rm{x}}^3} - 4{{\rm{x}}^2}\)\(\; = 9{{\rm{x}}^3}.\)
b)
\(\eqalign{ B &= 2{{\rm{a}}^2} - {b^2} + 3{{\rm{a}}^2} - (5{{\rm{a}}^2} - 11{\rm{a}}b + 8{b^2} + 2{b^2} + 7{{\rm{a}}^2} - 5{\rm{a}}b) \cr & {\rm{ }} = 2{a^2} - {b^2} + 3{a^2} - 5{a^2} + 11ab - 8{b^2} - 2{b^2} - 7{a^2} + 5ab \cr & {\rm{ }} = - 7{a^2} - 11{b^2} + 16ab. \cr} \)
Bài 2: Ta có:
\(\eqalign{ K - M - L &= ({a^2} + ab - {b^2}) - (2{{\rm{a}}^2} + 3{\rm{a}}b - 5{b^2}) - ( - 4{{\rm{a}}^2} + 2{\rm{a}}b - 3{b^2}) \cr & {\rm{ }} = {a^2} + ab - {b^2} - 2{{\rm{a}}^2} - 3{\rm{a}}b + 5{b^2} + 4{{\rm{a}}^2} - 2{\rm{a}}b + 3{b^2} \cr & {\rm{ }} = 3{a^2}{\rm{ - 4a}}b + 7{b^2}. \cr} \)
Bài 3: Ta có:
\(\eqalign{ & 3{{\rm{x}}^2} + 3{{\rm{x}}^2}{y^2} - {x^3} - P = 3{{\rm{x}}^2} + 2{\rm{x}}y - 4{y^2} \cr & \Rightarrow P = 3{{\rm{x}}^2} + 3{{\rm{x}}^2}{y^2} - {x^3} - 3{{\rm{x}}^2} - 2{\rm{x}}y + 4{y^2} \cr & \Rightarrow P = 3{{\rm{x}}^2}{y^2} - {x^3} - 2{\rm{x}}y + 4{y^2}. \cr} \)