LG câu a
Phương pháp:
Sử dụng biểu thức tọa độ của phép tịnh tiến:
Trong mặt phẳng \(Oxy\) cho điểm \(M(x;y)\) và vectơ \(\vec v(a;b)\). Gọi điểm \(M’=(x’;y’)=T_{\vec v}(M)\).
Khi đó \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\)
Giả sử \(A=(x;y)\). Theo đề cho \(A=T_{\vec v}(M)\) khi đó \(\left\{ \begin{array}{l}x = 3 + 2\\y = 2 - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y = 1\end{array} \right.\)
Vậy \(A=(5;1)\).
LG câu b
Phương pháp:
Sử dụng biểu thức tọa độ của phép tịnh tiến:
Trong mặt phẳng \(Oxy\) cho điểm \(M(x;y)\) và vectơ \(\vec v(a;b)\). Gọi điểm \(M’=(x’;y’)=T_{\vec v}(M)\).
Khi đó \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\)
Giả sử \(A=(x;y)\) . Theo đề cho \(M=T_{\vec v}(A)\) khi đó \(\) \(\left\{ \begin{array}{l}3 = x + 2\\2 = y - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 3\end{array} \right.\)
Vậy \(A=(1;3)\).