Bài 12 trang 106 SGK Toán 9 tập 1

Cho đường tròn tâm \(O\) bán kính \(5cm\), dây \(AB\) bằng \(8cm\).

a) Tính khoảng cách từ tâm \(O\) đến dây \(AB\).

b) Gọi \(I\) là điểm thuộc dây \(AB\) sao cho \(AI=1cm\). Kẻ dây \(CD\) đi qua \(I\) và vuông góc với \(AB\). Chứng minh rằng \(CD=AB\).

Lời giải

a) Kẻ \(OH\perp AB\). Suy ra \(H\) là trung điểm của dây \(AB\). (Theo định lí 2 - trang 103) 

\(\Rightarrow HA=HB=\dfrac{AB}{2}=\dfrac{8}{2}=4cm.\)

Xét tam giác \(HOB\) vuông tại \(H\), theo định lí Pytago, ta có:

\(OB^2=OH^2+HB^2 \Leftrightarrow OH^{2}=OB^{2}-HB^{2}\)

\(\Leftrightarrow OH^2=5^{2}-4^{2}=25-16=9\Rightarrow OH=3(cm)\).

Vậy khoảng cách từ tâm \(O\) đến dây \(AB\) là \(3cm\).

b) Vẽ \(OK\perp CD\).

Tứ giác \(KOHI\) có ba góc vuông nên là hình chữ nhật, suy ra \(OK=HI\).

Ta có \(HI=AH-AI=4-1=3cm\), suy ra \(OK=3cm.\)

Vậy \(OH=OK = 3cm.\)

Hai dây \(AB\) và \(CD\) cách đều tâm nên chúng bằng nhau.

Do đó \(AB = CD.\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”