\(\displaystyle {1 \over 2} - \left( {{1 \over 3} + {1 \over 4}} \right) < \square \)\(\,\displaystyle< {1 \over {48}} - \left( {{1 \over {16}} - {1 \over 6}} \right)\)
\(\displaystyle{6 \over {12}} - \left( {{4 \over {12}} + {3 \over {12}}} \right) < \square \)\(\,\displaystyle< {1 \over {48}} - \left( {{3 \over {48}} - {8 \over {48}}} \right)\)
\(\displaystyle \frac{6}{{12}} - \frac{7}{{12}} < \square < \frac{1}{{48}} - \left( {\frac{{ - 5}}{{48}}} \right)\)
\(\displaystyle - \frac{1}{{12}} < \square< \frac{6}{{48}} = \frac{1}{8}\)
\(\displaystyle \Rightarrow - {1 \over {12}} < 0 < {1 \over 8}\)
Vậy số nguyên cần điền là \(0\).