Bài 1.52 trang 25 SBT giải tích 12

Tiệm cận đứng và ngang của đồ thị hàm số \(y =  - \dfrac{3}{{x - 2}}\) là:

A. \(x = 2,y = 0\)                 B. \(x = 0,y = 2\)

C. \(x = 1,y = 1\)                 D. \(x =  - 2,y =  - 3\)

Lời giải

Ta có: \(\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - \dfrac{3}{{x - 2}}} \right) =  - \infty \) nên \(x = 2\) là đường tiệm cận đứng.

\(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \left( { - \dfrac{3}{{x - 2}}} \right) = 0\) nên \(y = 0\) là đường tiệm cận ngang.

Chọn A.