Đường sinh của hình nón là \(l = 16.\)
Độ dài cung \(AB\) của đường tròn chứa hình quạt là \(\dfrac {\pi .16.120}{180}=\dfrac{32. \pi}{3},\) và độ dài cung này bằng chu vi đáy hình nón \(C= 2πr\) suy ra \(2 \pi r=\dfrac{32. \pi}{3}\)\(\Rightarrow r= \dfrac{16}{3}.\)
Trong tam giác vuông \(AOS\) có: \(h= \sqrt{16^2-{\left( {\dfrac{{16}}{3}} \right)^2}}= 16\sqrt{\dfrac{8}{9}}= \dfrac{32\sqrt{2}}{3}\)
Vậy ta có: \(\tan \alpha= \dfrac{r}{h} = \dfrac{\sqrt{2}}{4}.\)
Chọn A.