Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu

Bài Tập và lời giải

Trả lời câu hỏi Bài 3 trang 121 Toán 9 Tập 2

Cắt một hình trụ hoặc một hình cầu với mặt phẳng vuông góc với trục, ta được hình gì ? Hãy điền vào bảng (chỉ với từ “có”, “không”) (h.104)

Xem lời giải

Bài 30 trang 124 SGK Toán 9 tập 2

Nếu thể tích của một hình cầu là \(113\frac{1}{7}\) thì trong các kết quả sau đây, kết quả nào là bán kính của nó (lấy \(\displaystyle \pi  = {{22} \over 7}\))?

(A) \(2 cm\)      (B) \(3 cm\)        (C) \(5 cm\)       (D) \(6 cm\) ;

(E) Một kết quả khác.

Xem lời giải

Bài 31 trang 124 SGK Toán 9 tập 2

Hãy điền vào các ô trống ở bảng sau:

Xem lời giải

Bài 32 trang 125 SGK Toán 9 tập 2

Một khối gỗ dạng hình trụ, bán kính đường tròn là \(r\), chiều cao \(2r\) (đơn vị: cm).

Người ta khoét rỗng hai nửa hình cầu như hình 108. Hãy tính diện tích bề mặt của khối gỗ còn lại (diện tích cả ngoài lần trong). 

         Hình 108

Xem lời giải

Bài 33 trang 125 SGK Toán 9 tập 2

Dụng cụ thể thao

Các loại bóng cho trong bảng đều có dạng hình cầu. Hãy điền vào các ô trống ở bảng sau (làm tròn kết quả đến chữ số thập phân thứ hai):

Xem lời giải

Bài 34 trang 125 SGK Toán 9 tập 2

Khinh khí cầu của nhà Mông-gôn-fi-ê.

Ngày 4 - 6 - 1783, anh em nhà Mông-gôn-fi-ê (người Pháp) phát minh ra khinh khí cầu dùng không khí nóng. Coi khí cầu này là hình cầu có đường kính \(11\, m\). Hãy tính diện tích mặt khinh khí cầu đó (làm tròn kết quả đến chữ số thập phân thứ hai).

Xem lời giải

Bài 35 trang 126 SGK Toán 9 tập 2

Một cái bồn chứa xăng gồm hai cửa hình cầu và hình trụ (h110)

Hãy tính thể tích của bồn chứa theo kích thước cho trên hình vẽ.

Xem lời giải

Bài 36 trang 126 SGK Toán 9 tập 2

Một chi tiết máy gồm một hình trụ và hai nửa hình cầu với các kích thước đã cho trên hình 111 (đơn vị: cm)

a) Tìm một hệ thức giữa \(x\) và \(h\) khi \(AA'\) có độ dài không đổi  và bằng \(2a.\)

b) Với điều kiện ở a) hãy tính diện tích bề mặt và thể tích của chi tiết theo \(x\) và \(a.\)

Xem lời giải

Bài 37 trang 126 SGK Toán 9 tập 2

Cho nửa đường tròn tâm \(O\), đường kính \(AB = 2R\), \(Ax\) và \(By\)  là hai tiếp tuyến với  nửa đường tròn tại \(A\) và \(B\). Lấy trên tia \(Ax\) điểm \(M\) rồi vẽ tiếp tuyến \(MP\) cắt \(By\) tại \(N\).

a) Chứng minh rằng \(MON\)  và \(APB\) là hai tam giác vuông đồng dạng.

b) Chứng minh rằng \(AM.BN = R^2\) 

c) Tính tỉ số \(\dfrac{S_{MON}}{S_{APB}}\)khi \(AM\) = \(\dfrac{R}{2}.\)

d) Tính thể tích của hình do nửa hình tròn \(APB\) quay quanh \(AB\) sinh ra.

Xem lời giải

Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”