Với mỗi điểm \(M\), gọi \(M'\) = \({V_{(O,k)}}(M)\), \(M''={V_{(O,p)}}(M')\). Khi đó: \(\overrightarrow{OM'}\) = \(k \overrightarrow{OM}\) , \(\overrightarrow{OM''}\) = \(p\overrightarrow{OM'}\) = \(pk\overrightarrow{OM}\). Từ đó suy ra \(M''= {V_{(O,pk)}} (M)\).
Vậy thực hiện liên tiếp hai phép vị tự \({V_{(O,k)}}^{}\) và \({V_{(O,p)}}^{}\) sẽ được phép vị tự \({V_{(O,pk)}}^{}\).