Bài 34* trang 12 SBT toán 9 tập 2

Đề bài

Nghiệm chung của ba phương trình đã cho được gọi là nghiệm của hệ gồm ba phương trình ấy. Giải hệ phương trình là tìm nghiệm chung của tất cả các phương trình trong hệ. Hãy giải các hệ phương trình sau:

\(a)\left\{ {\matrix{
{3x + 5y = 34} \cr 
{4x - 5y = - 13} \cr 
{5x - 2y = 5} \cr} } \right.\)

\(b)\left\{ {\matrix{
{6x - 5y = - 49} \cr 
{ - 3x + 2y = 22} \cr 
{7x + 5y = 10} \cr} } \right.\)

Lời giải

\(a)\left\{ {\matrix{
{3x + 5y = 34} \cr 
{4x - 5y = - 13} \cr 
{5x - 2y = 5} \cr} } \right.\)

Ta giải hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{3x + 5y = 34} \cr 
{4x - 5y = - 13} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{7x = 21} \cr 
{4x - 5y = - 13} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = 3} \cr 
{4.3 - 5y = - 13} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{x = 3} \cr 
{ - 5y = - 25} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = 3} \cr 
{y = 5} \cr} } \right. \cr} \)

Thay \(x = 3\) và \(y = 5\) vào phương trình \(5x - 2y = 5\) ta được:

\(5.3 - 2.5 =5 \Leftrightarrow 5 = 5 \text{(luôn đúng)}\)

Do đó cặp \((x; y) = (3; 5)\) là nghiệm của phương trình \(5x - 2y = 5\).

Vậy hệ phương trình đã cho có nghiệm duy nhất là \((x; y) =  (3;5)\)

\(b)\left\{ {\matrix{
{6x - 5y = - 49} \cr 
{ - 3x + 2y = 22} \cr 
{7x + 5y = 10} \cr} } \right.\)

Ta giải hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{6x - 5y = - 49} \cr 
{7x + 5y = 10} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{13x = - 39} \cr 
{7x + 5y = 10} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = - 3} \cr 
{7.\left( { - 3} \right) + 5y = 10} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{x = - 3} \cr 
{y = \displaystyle{{31} \over 5}} \cr} } \right. \cr} \)

Thay \(x = -3\); \(y = \displaystyle{{31} \over 5}\) vào phương trình \( - 3x + 2y = 22\) ta được:

\( - 3.\left( { - 3} \right) +\displaystyle 2.{{31} \over 5} =22 \\ \Leftrightarrow 9 + \displaystyle{{62} \over 5} =22 \\  \Leftrightarrow \displaystyle{{107} \over 5} =  22 \  \text{(vô lí)} \)

Do đó cặp  \((x; y) =\left( { - 3;\displaystyle {{31} \over 5}} \right)\) không phải là nghiệm của phương trình \( - 3x + 2y = 22\).

Vậy hệ phương trình đã cho vô nghiệm.