Bài 41 trang 27 SGK Toán 9 tập 2

Giải các hệ phương trình sau:

a)  \(\left\{ \matrix{x\sqrt 5 - \left( {1 + \sqrt 3 } \right)y = 1 \hfill \cr \left( {1 - \sqrt 3 } \right)x + y\sqrt 5 = 1 \hfill \cr} \right.\)

b)  \(\left\{ \begin{array}{l}\dfrac{{2x}}{{x + 1}} + \dfrac{y}{{y + 1}} = \sqrt 2 \\\dfrac{x}{{x + 1}} + \dfrac{{3y}}{{y + 1}} =  - 1\end{array} \right.\)  

Lời giải

a)  

\(\left\{ \matrix{
x\sqrt 5 - \left( {1 + \sqrt 3 } \right)y = 1(1) \hfill \cr
\left( {1 - \sqrt 3 } \right)x + y\sqrt 5 = 1(2) \hfill \cr} \right.\) 

Ta giải hệ phương trình bằng phương pháp thế:

Từ (1) ta có  \(x = \displaystyle{{\left( {1 + \sqrt 3 } \right)y + 1} \over {\sqrt 5 }}(3)\)

Thế (3) vào (2), ta được:  

\(\eqalign{
& \left( {1 - \sqrt 3 } \right)\left[ {{{\left( {1 + \sqrt 3 } \right)y + 1} \over {\sqrt 5 }}} \right] + y\sqrt 5 = 1 \cr
& \Leftrightarrow \left( {1 - \sqrt 3 } \right)\left( {1 + \sqrt 3 } \right)y + \left( {1 - \sqrt 3 } \right) + 5y = \sqrt 5 \cr
& \Leftrightarrow - 2y + 5y = \sqrt 5 + \sqrt 3 - 1 \cr&\Leftrightarrow y = {{\sqrt 5 + \sqrt 3 - 1} \over 3} \cr} \)

Thế y vừa tìm được vào (3), ta được:

\(\begin{array}{l}
x = \dfrac{{\left( {1 + \sqrt 3 } \right)\left( {\sqrt 5  + \sqrt 3  - 1} \right) + 3}}{{3\sqrt 5 }} = \dfrac{{\sqrt 5  + \sqrt 3  - 1 + \sqrt {15}  + 3 - \sqrt 3  + 3}}{{3\sqrt 5 }}\\
 = \dfrac{{\sqrt 5  + \sqrt {15}  + 5}}{{3\sqrt 5 }} = \dfrac{{\sqrt 5 \left( {1 + \sqrt 3  + \sqrt 5 } \right)}}{{3\sqrt 5 }} = \dfrac{{1 + \sqrt 3  + \sqrt 5 }}{3}
\end{array}\)

Vậy hệ phương trình có nghiệm là: \(\displaystyle\left( {{{\sqrt 5  + \sqrt 3  + 1} \over 3};{{\sqrt 5  + \sqrt 3  - 1} \over 3}} \right)\)

b)Giải hệ phương trình: (I) 

\(\left\{ \matrix{ {{2{\rm{x}}} \over {x + 1}} + {y \over {y + 1}} = \sqrt 2 \hfill \cr {x \over {x + 1}} + {{3y} \over {y + 1}} = - 1 \hfill \cr} \right.\)

Điều kiện: \(x \ne  - 1;y \ne  - 1\)

Ta giải hệ phương trình bằng phương pháp đặt ẩn phụ.

Đặt \(u = {x \over {x + 1}};v = {y \over {y + 1}}\)

Thay vào hệ (I), ta có hệ mới với ẩn là \(u\) và \(v\) ta được:

\(\left\{ \matrix{ 2u + v = \sqrt 2 (1') \hfill \cr u + 3v = - 1(2') \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ 2u + v = \sqrt 2 (3) \hfill \cr - 2u - 6v = 2(4) \hfill \cr} \right.\)

Cộng (3) và (4) vế theo vế, ta được: \( - 5{\rm{v}} = 2 + \sqrt 2  \Leftrightarrow v = {{ - \left( {2 + \sqrt 2 } \right)} \over 5}\)

Thay \(v = {{ - \left( {2 + \sqrt 2 } \right)} \over 5}\) vào (1’), ta được:

\(2u = {{2 + \sqrt 2 } \over 5} + \sqrt 2  \Leftrightarrow 2u = {{2 + \sqrt 2  + 5\sqrt 2 } \over 5} = {{2 + 6\sqrt 2 } \over 5}\)

\(\Leftrightarrow u = {{1 + 3\sqrt 2 } \over 5}\)

Với giá trị của \(u,v\) vừa tìm được, ta thế vào để tìm nghiệm \(x, y\).

Ta có: 

\(\left\{ \matrix{ {x \over {x + 1}} = {{1 + 3\sqrt 2 } \over 5} \hfill \cr {y \over {y + 1}} = {{ - 2 - \sqrt 2 } \over 5} \hfill \cr} \right.đk\left\{ \matrix{ x \ne - 1 \hfill \cr y \ne - 1 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{ x = \left( {x + 1} \right)\left( {{{1 + 3\sqrt 2 } \over 5}} \right) \hfill \cr y = \left( {y + 1} \right){{\left( { - 2 - \sqrt 2 } \right)} \over 5} \hfill \cr} \right.\)

\(\left\{ \matrix{ 5{\rm{x}} = \left( {x + 1} \right)\left( {1 + 3\sqrt 2 } \right) \hfill \cr 5y = \left( {y + 1} \right)\left( { - 2 - \sqrt 2 } \right) \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ x = {{1 + 3\sqrt 2 } \over {4 - 3\sqrt 2 }} \hfill \cr y = {{-2 - \sqrt 2 } \over {7 + \sqrt 2 }} \hfill \cr} \right.\)

Vậy nghiệm của hệ phương trình là: \(\left( {{{1 + 3\sqrt 2 } \over {4 - 3\sqrt 2 }};{{-2 - \sqrt 2 } \over {7 + \sqrt 2 }}} \right)\) thỏa mãn điều kiện


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”