Điều kiện: \(\left\{ \begin{array}{l}2x + 3 > 0\\3x + 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > - \dfrac{3}{2}\\x > - \dfrac{1}{3}\end{array} \right. \Leftrightarrow x > - \dfrac{1}{3}\)
\({\log _{\frac{1}{2}}}\left( {2x + 3} \right) > {\log _{\frac{1}{2}}}\left( {3x + 1} \right)\) \( \Leftrightarrow 2x + 3 < 3x + 1\) \( \Leftrightarrow 2x - 3x < 1 - 3\) \( \Leftrightarrow - x < - 2 \Leftrightarrow x > 2\).
Kết hợp điều kiện ta được \(x > 2\).
Vậy tập nghiệm của bất phương trình là \(S = \left( {2; + \infty } \right)\).