Bài 1 trang 77 SGK Hình học 11

Cho hai hình thang \(ABCD\) và \(ABEF\) có chung đáy lớn \(AB\) và không cùng nằm trong một mặt phẳng.

a) Tìm giao tuyến của các mặt phắng sau: \((AEC)\) và \((BFD)\), \((BCE)\) và \((ADF)\).

b) Lấy \(M\) là điểm thuộc \(DF\). Tìm giao điểm của đường thẳng \(AM\) với mặt phẳng \((BCE)\).

c) Chứng minh hai đường thẳng \(AC\) và \(BF\) không cắt nhau.

Lời giải

a) Trong \((ABCD)\), gọi \(I=AC ∩ BD \). 

Do đó \(\left\{ \begin{array}{l}I \in AC \subset \left( {AEC} \right)\\I \in BD \subset \left( {BFD} \right)\end{array} \right.\) \( \Rightarrow I \in \left( {AEC} \right) \cap \left( {BFD} \right)\).

Trong \(( ABEF)\), gọi \(J=AE ∩ BF \)

Do đó \(\left\{ \begin{array}{l}J \in AE \subset \left( {AEC} \right)\\J \in BF \subset \left( {BFD} \right)\end{array} \right.\)\( \Rightarrow J \in \left( {AEC} \right) \cap \left( {BFD} \right)\).

Vậy \( (ACE) ∩ (BDF) = IJ\).

Trong \(\left( {ABCD} \right)\): gọi \(G = AD \cap BC\).

Khi đó \(\left\{ \begin{array}{l}G \in AD \subset \left( {ADF} \right)\\G \in BC \subset \left( {BCE} \right)\end{array} \right.\) \( \Rightarrow G \in \left( {ADF} \right) \cap \left( {BCE} \right)\).

Trong \(\left( {ABEF} \right)\): gọi \(H = AF \cap BE\).

Khi đó \(\left\{ \begin{array}{l}H \in AF \subset \left( {ADF} \right)\\H \in BE \subset \left( {BCE} \right)\end{array} \right.\) \( \Rightarrow H \in \left( {ADF} \right) \cap \left( {BCE} \right)\).

Vậy \((BCE) ∩ ( ADF) = GH\)

b) Trong \((AGH)\): Gọi \(N=AM ∩ GH\)

\( \Rightarrow \left\{ \begin{array}{l}N \in AM\\N \in GH \subset \left( {BGH} \right) \equiv \left( {BCE} \right)\end{array} \right.\) \( \Rightarrow N = AM \cap \left( {BCE} \right)\)

c) Chứng minh bằng phương pháp phản chứng.

Giả sử \(AC\) và \(BF\) cùng nằm trong một mặt phẳng.

Khi đó \(BF \subset \left( {ABCD} \right)\) hay hai mặt phẳng \(\left( {ABCD} \right)\) và \(\left( {ABEF} \right)\) trùng nhau (mâu thuẫn giả thiết)

Do đó: \(AC\) và \(BF\) không cắt nhau.