Giả sử hệ hai phương trình bậc nhất hai ẩn: \(\left\{\begin{matrix} ax +by = c \ (d) & & \\ a'x + b'y = c' \ (d') & & \end{matrix}\right.\)
có hai nghiệm phân biệt. Khi đó \((d)\) và \((d')\) giao nhau tại hai điểm phân biệt \(A\) và \(B\).
Do đó \(A,\ B\) nằm trên đường thẳng \(d\).
Cũng có \(A,\ B\) cùng nằm trên đường thẳng \(d'\).
Vì qua hai điểm phân biệt ta luôn vẽ được một và chỉ một đường thẳng nên \(d\) và \(d'\) trùng nhau. Tức là hệ trên có vô số nghiệm.