a) Ta có:
\(\left\{\begin{matrix} y = 3 - 2x & & \\ y = 3x - 1 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} y = -2x + 3 \, (d) & & \\ y = 3x - 1 \, (d') & & \end{matrix}\right.\)
Ta có \(a = -2, a' = 3\) nên \(a ≠ a'\).
Do đó hai đường thẳng \( (d)\) và \((d')\) cắt nhau nên hệ phương trình đã cho có một nghiệm duy nhất.
b) Ta có:
\(\left\{\begin{matrix} y = -\dfrac{1}{2}x+ 3 \, (d) & & \\ y = -\dfrac{1}{2}x + 1 \, (d') & & \end{matrix}\right.\)
Ta có \(a = -\dfrac{1}{2},b = 3 \) và \(a' = -\dfrac{1}{2}, b' = 1\) nên \(a = a', b ≠ b'\).
Do đó hai đường thẳng \( (d)\) và \((d')\) song song nên hệ phương trình đã cho vô nghiệm.
c) Ta có:
\(\left\{\begin{matrix} 2y = -3x & & \\ 3y = 2x & & \end{matrix}\right.\)⇔ \(\left\{\begin{matrix} y = -\dfrac{3}{2}x \, (d) & & \\ y = \dfrac{2}{3}x\, (d') & & \end{matrix}\right.\)
Ta có \(a = -\dfrac{3}{2}, a' = \dfrac{2}{3}\) nên \(a ≠ a'\)
Do đó hai đường thẳng \( (d)\) và \((d')\) cắt nhau nên hệ phương trình đã cho có một nghiệm duy nhất.
d) Ta có:
\(\left\{\begin{matrix} 3x - y = 3 & & \\ x - \dfrac{1}{3}y = 1 & & \end{matrix}\right.\) ⇔\(\left\{\begin{matrix} y = 3x - 3 & & \\ \dfrac{1}{3}y = x - 1 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} y = 3x - 3\, (d) & & \\ y = 3x - 3 \, (d')& & \end{matrix}\right.\)
Ta có \(a = 3,\ b = -3 \) và \(a' = 3,\ b' = -3\) nên \(a = a',\ b = b'\).
Do đó hai đường thẳng \( (d)\) và \((d')\) trùng nhau nên hệ phương trình đã cho có vô số nghiệm.