Bài 60 trang 56 SGK giải tích 12 nâng cao

 Chứng minh rằng các đồ thị của hai hàm số: \(f\left( x \right) = {{{x^2}} \over 2} + {3 \over 2}x\) và \(g\left( x \right) = {{3x} \over {x + 2}}\) tiếp xúc với nhau. Xác định tiếp điểm của hai đường cong trên và viết phương trình tiếp tuyến chung tại điểm đó.

Lời giải

Hoành độ tiếp điểm của hai đường cong đã cho là nghiệm của hệ phương trình:\(\eqalign{
(I)\,\,& \left\{ \matrix{
{{{x^2}} \over 2} + {3 \over 2}x = {{3x} \over {x + 2}} \hfill \cr 
{\left( {{{{x^2}} \over 2} + {3 \over 2}x} \right)'} = {\left( {{{3x} \over {x + 2}}} \right)'} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{{{x^2}} \over 2} + {3 \over 2}x = {{3x} \over {x + 2}}\,(1) \hfill \cr 
x + {3 \over 2} = {6 \over {{{\left( {x + 2} \right)}^2}}}\,(2) \hfill \cr} \right. \cr 
& (1)\, \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr 
{{x + 3} \over 2} = {3 \over {x + 2}} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr 
{x^2} + 5x = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr 
x = - 5 \hfill \cr} \right. \cr} \)+) \(x=0\) thỏa mãn (2)
+) \(x =-5\) không thỏa mãn (2)
Hệ phương trình (I) có \(1\) nghiệm duy nhất \(x = 0\). Vậy hai đường cong tiếp xúc với nhau tại gôc tọa độ \(O\); \(y'\left( 0 \right) = {3 \over 2}\). Phương trình tiếp tuyến chung của hai đường cong tại điểm gốc là \(y = {3 \over 2}x.\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”