Bài 62 trang 57 SGK giải tích 12 nâng cao

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số: \(y = {{x - 1} \over {x + 1}}\)

b) Chứng minh rằng giao điểm \(I\) của hai đường tiệm cận của đường cong đã cho là tâm đối xứng của nó.

Lời giải

a)Tập xác định:

 \(\eqalign{
& D = R\backslash \left\{ { - 1} \right\} \cr
& \cr} \)

Sự biến thiên:

\(y' = {2 \over {{{(x + 1)}^2}}} > 0\,\forall x \in D\)

Hàm số đồng biến trên khoảng \(( - \infty ; - 1)\) và \(( - 1; + \infty )\)

Giới hạn:

\(\mathop {\lim y}\limits_{x \to  - {1^ - }}  =  + \infty ;\,\mathop {\lim y}\limits_{x \to  - {1^ + }}  =  - \infty \)

Tiệm cận đứng: \(x=-1\)

\(\mathop {\lim y}\limits_{x \to  \pm \infty }  = 1\)

Tiệm cận ngang: \(y=1\) 

Bảng biến thiên:

Đồ thị giao \(Ox\) tại điểm \((1;0)\)

Đồ thị giao \(Oy\) tại điểm \((0;-1)\)

b) Giao điểm của hai tiệm cận của đường cong là \(I(-1;1)\)

Công thức đổi trục tịnh tiến theo vecto \(\overrightarrow {OI} \) là 

\(\left\{ \matrix{ x = X - 1 \hfill \cr y = Y + 1 \hfill \cr} \right.\)

Phương trình đường cong trong hệ tọa độ \(IXY\) là:

\(Y + 1 = {{X - 1 - 1} \over {X - 1 + 1}} \Leftrightarrow Y + 1 = {{X - 2} \over X} \Leftrightarrow Y =  - {2 \over X}\)

Đây là hàm số lẻ nên đồ thị nhận gốc \(I\) làm tâm đối xứng.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”