Hoành độ tiếp điểm của hai parabol là nghiệm của hệ phương trình:
\(\left\{ \matrix{ - {g \over {2v_o^2}}\left( {1 + {{\tan }^2}\alpha } \right){x^2} + x\tan \alpha = - {g \over {2v_o^2}}{x^2} + {{v_o^2} \over {2g}} \hfill \cr - {g \over {v_o^2}}\left( {1 + {{\tan }^2}\alpha } \right)x + \tan \alpha = - {g \over {v_o^2}}x \hfill \cr} \right.\)
Nghiệm của phương trình thứ hai của hệ là \(x = {{v_o^2} \over {g\tan \alpha }}\)
Ta có \(x = {{v_o^2} \over {g\tan \alpha }}\) cũng là nghiệm của phương trình thứ nhất của hệ. Vậy với mọi \(\alpha \in \left( {0;{\pi \over 2}} \right)\) hai parabol luôn tiếp xúc với nhau. Hoành độ tiếp điểm là \(x = {{v_o^2} \over {g\tan \alpha }}\). Tung độ của tiếp điểm là
\(y = - {g \over {2v_o^2}}{\left( {{{v_o^2} \over {g\tan \alpha }}} \right)^2} + {{v_o^2} \over {2g}} = {{v_o^2} \over {2g}}\left( {1 - {1 \over {{{\tan }^2}\alpha }}} \right)\)
Điểm \(\left( {{{v_o^2} \over {g\tan \alpha }};{{v_o^2} \over {2g}}\left( {1 - {{\cot }^2}\alpha } \right)} \right)\) là tiếp điểm của hai parabol với mọi \(\alpha \in \left( {0;{\pi \over 2}} \right)\)