Bài 72 trang 62 SGK giải tích 12 nâng cao

 Cho hàm số: \(f\left( x \right) = {1 \over 3}{x^3} - 2{x^2} + {{17} \over 3}\)
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.
b) Chứng minh rằng phương trình f(x) =0 có ba nghiệm phân biệt.

Lời giải

a) TXĐ: \(D =\mathbb R\)

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } y = + \infty ;\,\mathop {\lim }\limits_{x \to - \infty } y = - \infty \cr
& y'\left( x \right) = {x^2} - 4x;\,\,\,f'\left( x \right) = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = 4 \hfill \cr} \right.;\,f\left( 0 \right) = {{17} \over 3};\,f\left( 4 \right) = - 5 \cr} \)

\(\eqalign{
& f''\left( x \right) = 2x - 4;\,f''\left( x \right) = 0 \Leftrightarrow x = 2 \cr
& f\left( 2 \right) = {1 \over 3} \cr} \)

Điểm uốn \(I\left( {2;{1 \over 3}} \right)\)

Đồ thị nhận I làm tâm đối xứng.

b) Hàm số đã cho có cực đại và cực tiểu  và giá tị cực đại, cực tiểu trái dấu, tức hai điểm cực đại và cực tiểu của đồ thị nằm về hai phía đối với trục hoành do đó đồ thị hàm số cắt trục hoành tại ba điểm phân biệt


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”