Gọi vận tốc ca nô khi nước yên lặng là \(x (km/h)\); điều kiện: \(x > 3\)
Thì vận tốc lúc đi xuôi dòng là \(x + 3 (km/h)\)
Vận tốc ca nô đi ngược dòng là \(x – 3 (km/h)\)
Thời gian đi xuôi dòng là \(\displaystyle {{30} \over {x + 3}}\) giờ
Thời gian đi ngược dòng là \(\displaystyle {{30} \over {x - 3}}\) giờ
Thời gian ca nô đi thực tế là: \(6 - \dfrac{2}{3} = \dfrac{{16}}{3}\) giờ.
Ta có phương trình:
\(\eqalign{
& {{30} \over {x + 3}} + {{30} \over {x - 3}} = {{16} \over 3} \cr
& \Rightarrow 90\left( {x - 3} \right) + 90\left( {x + 3} \right) \cr &= 16\left( {x + 3} \right)\left( {x - 3} \right) \cr
& \Leftrightarrow 90x - 270 + 90x + 270 \cr &= 16{x^2} - 144 \cr
& \Leftrightarrow 16{x^2} - 180x - 144 = 0 \cr
& \Leftrightarrow 4{x^2} - 45x - 36 = 0 \cr
& \Delta = {\left( { - 45} \right)^2} - 4.4.\left( { - 36} \right) \cr &= 2025 + 675 = 2601 > 0 \cr
& \sqrt \Delta = \sqrt {2601} = 51 \cr
& {x_1} = {{45 + 51} \over {2.4}} = {{96} \over 8} = 12 \cr
& {x_2} = {{45 - 51} \over {2.4}} = {{ - 6} \over 8} = - {3 \over 4} \cr} \)
\(\displaystyle {x_2} = - {3 \over 4} < 0\) không thỏa mãn điều kiện: loại.
Vậy vận tốc ca nô khi nước yên lặng là \(12 km/h\).