Đề kiểm tra 15 phút - Đề số 1 - Bài 7, 8 - Chương 2 - Hình học 7

Đề bài

Bài 1. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC, biết AB = 20cm, AH = 12cm, AC = 15cm. Tính BC, BH, CH.

Bài 2. Các tam giác cho dưới đây có phải là tam giác vuông không? Hãy chứng minh, nếu là tam giác vuông cho biết vuông tại đỉnh nào?

a) \(AB = 8cm;\,AC = 17cm;\,BC = 15cm.\)

b) \(AB = 25cm;\,AC = 24cm;\,BC = 6cm.\)

Lời giải

Bài 1.

\(\Delta ABC\) vuông tại A ta có \(B{C^2} = A{B^2} + A{C^2}\)

\(\eqalign{  &  = {20^2} + {15^2}  \cr  &  = 625 \cr} \)

\( \Rightarrow B{C^2} = \sqrt {625}  = 25\,(cm)\)

Lại có \(AH \bot BC\) (giả thiết) nên \(\Delta AHB\) vuông tại H.

Ta có \(B{H^2} = A{B^2} + A{H^2}\)\(\, = {20^2} + {12^2} = 256\)

\( \Rightarrow BH = \sqrt {256}  = 16\,(cm)\)

Do đó \(CH = BC - BH= 25 - 16 = 9\,(cm)\)

Bài 2.

a) Ta có \({8^2} + {15^2} = {17^2}\,(A{B^2} + B{C^2} = C{A^2})\). Theo định lí Pytago đảo ta có \(\Delta ABC\) vuông tại B.

b) Ta có \({6^2} + {24^2} \ne {25^2}\).

Vậy \(\Delta ABC\) không phải là tam giác vuông.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”