Đề kiểm tra 45 phút (1 tiết) - Đề số 4 – Chương IV - Giải tích 12

Câu 1. Cho hai số phức \({z_1} = 9 - i,\,\,\,{z_2} =  - 3 + 2i\). Tính giá trị của \(\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right|\) bằng bao nhiêu /

A. \(\dfrac{{2\sqrt {154} }}{{13}}\).               B. \(\dfrac{{616}}{{169}}\).

C. \(\dfrac{{82}}{{13}}\).                       D. \(\sqrt {\dfrac{{82}}{{13}}} \).

Câu 2. Cho hai số phức \({z_1} = a + bi,\,\,{z_2} = c + di\)z. Tìm phần thực của số phức \({z_1}.{z_2}\).

A. Phần thực của số phức \({z_1}.{z_2}\) là ac + bd.

B. Phần thực của số phức \({z_1}.{z_2}\) là  ac – bd .

C. Phần thực của số phức \({z_1}.{z_2}\) là ad + bc.

D. Phần thực của số phức \({z_1}.{z_2}\) là ad – bc

Câu 3. Cho số phức \(z =  - \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}i\). Khi đó số phức \({\left( {\overline z } \right)^2}\) bằng ;

A. \( - \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}i\).        

B. \(\sqrt 3  - i\).

C. \( - \dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}i\).      

D. \(1 + \sqrt 3 i\).

Câu 4.Giả sử A, B theo thứ tự là điểm biểu diễn của các số phức \({z_1} = {a_1} + {b_1}i\,,\,\,{z_2} = {a_2} + {b_2}i\). Khi đó độ dài của véc tơ \(\overrightarrow {AB} \) bằng ;

A. \(|{z_1} + {z_2}|\).      

B. \(|{z_1}| + |{z_2}|\).

C. \(|{z_1}| - |{z_2}|\).               

D. \(|{z_1} - {z_2}|\).

Câu 5. Mô đun của số phức z thỏa mãn \(\dfrac{{2 + i}}{{1 - i}}z = \dfrac{{ - 1 + 3i}}{{2 + i}}\) là:

A. \(\sqrt 5 \)                             B. \(\dfrac{{\sqrt 5 }}{5}\)

C. \(\dfrac{{2\sqrt 5 }}{5}\)                           D. \(\dfrac{{3\sqrt 5 }}{5}\).

Câu 6. Tính số phức sau : \(z = {\left( {1 + i} \right)^{15}}\).

A. \(z =  - 128 + 128i\).         

B. \(z = 128 - 128i\).

C. \(z = 128 + 128i\).         

D. \(z =  - 128 - 128i\).

Câu 7. Cho số phức z = a + bi. Khi đó số \(\dfrac{1}{2}\left( {z + \overline z } \right)\) là:

A. Một số thuần ảo. 

B. 2a.

C. i.               

D. a.

Câu 8. Cho các số phức \({z_1} = 2 - 5i\,,\,\,{z_2} =  - 2 - 3i\). Hãy tính \(|{z_1} - {z_2}|\).

A. \(2\sqrt 5 \)                       B. 20         

C. 12                           D. \(2\sqrt 3 \).

Câu 9. Cho số phức z thỏa mãn \(\left( {3 - 2i} \right)z = 4 + 2i\). Tìm số phức liên hợp của z.

A. \(\overline z  = 4 - 2i\). 

B. \(\overline z  = \dfrac{8}{{13}} + \dfrac{{14}}{{13}}i\).

C. \(\overline z  = 3 + 2i\).    

D. \(\overline z  = \dfrac{8}{{13}} - \dfrac{{14}}{{13}}i\).

Câu 10. Giải phương trình \({z^2} - 6z + 11 = 0\), ta có nghiệm là :

A. \(z = 3 + \sqrt 2 i\).     

B. \(z = 3 - \sqrt 2 i\).

C. \(\left[ \begin{array}{l}z = 3 + \sqrt 2 i\\z = 3 - \sqrt 2 i\end{array} \right.\).          

D. Một kết quả khác .

Câu 11. Cho hai số phức \(z = a + bi\,,\,\,z' = a' + b'i\). Chọn công thức đúng .

A. \(z + z' = \left( {a + b} \right) + \left( {a' + b'} \right)i\).

B. \(z - z' = \left( {a + a'} \right) - \left( {b + b'} \right)i\).

C. \(z.z' = \left( {aa' - bb'} \right) + \left( {ab' + a'b} \right)i\). 

D. \(z.z' = \left( {aa' + bb'} \right) - \left( {ab' + a'b} \right)i\).

Câu 12. Cho z = 1 + 2i. Phần thực và phần ảo của số phức \(w = 2z + \overline z \) là:

A. 3 và 2.   

B. 3 và 2i.

C. 1 và 6.                

D. 1 và 6i.

Câu 13. Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x + 2y = 1 + i\\3x + iy = 2 - 3i\end{array} \right.\) là:

A. \(\left\{ \begin{array}{l}x = 1 + i\\y = i\end{array} \right.\).     

B. \(\left\{ \begin{array}{l}x = i\\y = 1 + i\end{array} \right.\).

C. \(\left\{ \begin{array}{l}x = 1 - i\\y = i\end{array} \right.\).       

D. \(\left\{ \begin{array}{l}x = i\\y = 1 - i\end{array} \right.\).

Câu 14. Tìm số phức có phần thực bằng 12 và mô đun bằng 13.

A. \(5 \pm 12i\).          

B. 12 + 5i.

C. \(12 \pm 5i\).                      

D. \(12 \pm i\).

Câu 15. Phương trình \({z^2} - 2z + 3 = 0\) có các nghiệm là:

A. \(2 \pm 2\sqrt 2 i\).      

B. \( - 2 \pm 2\sqrt 2 i\).

C. \( - 1 \pm 2\sqrt 2 i\).       

D. \(1 \pm \sqrt 2 i\).

Câu 16. Tập hợp các điểm biểu diễn số phức z thỏa mãn \(|\overline z  + 3 - 2i| = 4\) là:

A. Đường tròn tâm I(3 ; 2) có bán kính R = 4.

B. Đường tròn tâm I(3 ; -2) có bán kính R= 4.

C. Đường tròn tâm I(-3 ; 2) có bán kính R = 4.

D. Đường tròn tâm I(- 3; -2) có bán kính R = 4.

Câu 17. Hai điểm biểu diễn hai số phức liên hợp \(z = 2 + 2i,\,\,\overline z  = 2 - 2i\) đối xứng với nhau qua :

A. Trục tung.     

B. Trục hoành.

C. Gốc tọa độ.    

D. Điểm A(2; -2).

Câu 18. Cho số phức \(z = r\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\). Chọn 1 acgumen của z:

A. \( - \dfrac{\pi }{2}\)                           B. \( - \dfrac{{3\pi }}{2}\)   

C. \(\dfrac{{3\pi }}{2}\)                             D. \(\pi \).

Câu 19. Mô đun của tổng hai số phức \({z_1} = 3 - 4i\,,\,\,{z_2} = 4 + 3i\):

A. \(5\sqrt 2 \)                          B. 10

C. 8                                D. 50.

Câu 20. Cho số phức \(z =  - r\left( {\cos \varphi  + i\sin \varphi } \right)\). Tìm một acgumen của z ?

A. \( - \varphi \).    

B. \(\varphi  + 2\pi \).

C. \(\varphi  - 2\pi \).     

D. \(\varphi  + \pi \).

Câu 21. Tính \(z = \dfrac{{5 + 5i}}{{3 - 4i}} + \dfrac{{20}}{{4 + 3i}}\).

A. z = 3 –  i.   

B. z = 3 + i.

C. z = - 3 – i.   

D. z = - 3 + i.

Câu 22.Tập hợp các điểm biểu diễn số phức z thỏa mãn \(|z + 1 + i|\, \le 2\) là;

A. Đường tròn tâm I(1 ; 1) bán kính R = 2.

B. Hình tròn tâm I(1; 1) bán kính R = 2.

C. Đường tròn tâm I(- 1 ; - 1) bán kính R = 2.

D. Hình tròn tâm I(- 1 ; - 1) bán kính R = 2.

Câu 23. Dạng lượng giác của số phức z = i – 1 là:

A. \(z = \sqrt 2 \left( {\cos \dfrac{{3\pi }}{4} - i\sin \dfrac{{3\pi }}{4}} \right)\).  

B. \(z = 2\left( {\cos \dfrac{{3\pi }}{4} + i\sin \dfrac{{3\pi }}{4}} \right)\).

C. \(z = \sqrt 2 \left( {\cos \dfrac{{ - \pi }}{4} + i\sin \dfrac{{ - \pi }}{4}} \right)\). 

D. \(z = \sqrt 2 \left( {\cos \dfrac{{3\pi }}{4} + i\sin \dfrac{{3\pi }}{4}} \right)\).

Câu 24. Trong mặt phẳng phức, các điểm A, B lần lượt là điểm biểu diễn của \({z_1} = 2 - 4i\,,\,\,{z_2} = 4 + 5i\). Trung điểm của AB có tọa độ là:

A. \(A\left( {3;\dfrac{3}{2}} \right)\).    

B. \(A\left( {3;1} \right)\).

C. \(A\left( {3;\dfrac{1}{2}} \right)\).  

D. \(A\left( {6;1} \right)\).

Câu 25. Cho số phức z thỏa mãn \(\left( {3 + 2i} \right)z + {\left( {2 - i} \right)^2} = 4 + i\). Mô đun của số phức \(w = \left( {z + 1} \right)\overline z \) là:

A. 2                             B. 4    

C. 10                            D. \(\sqrt {10} \).

Lời giải

1

2

3

4

5

D

B

A

D

C

6

7

8

9

10

B

D

A

D

C

11

12

13

14

15

C

A

C

C

D

16

17

18

19

20

A

B

B

A

D

21

22

23

24

25

A

D

D

C

D

Câu 1: D

\(\begin{array}{l}{z_1} = 9 - i;{z_2} =  - 3 + 2i\\\dfrac{{{z_1}}}{{{z_2}}} = \dfrac{{\left( {9 - i} \right)\left( { - 3 - 2i} \right)}}{{9 - 4{i^2}}}\\\,\,\,\,\,\,\, = \dfrac{{ - 27 + 2{i^2} - 15i}}{{13}} =  - \dfrac{{29}}{{13}} - \dfrac{{15}}{{13}}i\\ \Rightarrow \left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = \sqrt {{{\left( { - \dfrac{{29}}{{13}}} \right)}^2} + {{\left( { - \dfrac{{15}}{{13}}} \right)}^2}}\\\;\;\;\;\;\;\;\;\;\;\;\;\,  = \sqrt {\dfrac{{82}}{{13}}} \end{array}\)

Câu 2: B

Câu 3: A

\(\begin{array}{l}z =  - \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}i\\ \Rightarrow {\left( {\overline z } \right)^2} = {\left( { - \dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}i} \right)^2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{{{\left( {1 + \sqrt 3 i} \right)}^2}}}{4}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{ - 2 + 2\sqrt 3 i}}{4}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, =  - \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}i\end{array}\)

Câu 4: D

Câu 5 C

\(\begin{array}{l}\dfrac{{2 + i}}{{1 - i}}z = \dfrac{{ - 1 + 3i}}{{2 + i}}\\ \Leftrightarrow z = \dfrac{{\left( { - 1 + 3i} \right)\left( {1 - i} \right)}}{{{{(2 + i)}^2}}}\\ \Leftrightarrow z = \dfrac{{2 + 4i}}{{3 + 4i}}\\ \Leftrightarrow z = \dfrac{{\left( {2 + 4i} \right)\left( {3 - 4i} \right)}}{{9 - 16{i^2}}}\\ \Leftrightarrow z = \dfrac{{6 - 16{i^2} + 4i}}{{25}}\\ \Leftrightarrow z = \dfrac{{22}}{{25}} + \dfrac{4}{{25}}i\\ \Rightarrow \left| z \right| = \dfrac{{2\sqrt 5 }}{5}\end{array}\)

Câu 6: B

\(\begin{array}{l}z = {(1 + i)^{15}} = {\left( {1 + i} \right)^{14}}(1 + i)\\\,\,\,\, = {({(1 +  + i)^2})^7}\left( {1 + i} \right) = {2^7}{i^7}\left( {1 + i} \right)\\\,\,\,\, =  - {2^7}i\left( {1 + i} \right) = 128 - 128i\end{array}\)

Câu 7: D

Câu 8: A

\({z_1} - {z_2} = \left( {2 - 5i} \right) - ( - 2 - 3i)\)\(\, = 4 - 2i\)

\( \Rightarrow \left| {{z_1} - {z_2}} \right| = 2\sqrt 5\)

Câu 9: D

\(\begin{array}{l}\left( {3 - 2i} \right)z = 4 + 2i\\ \Leftrightarrow z = \dfrac{{4 + 2i}}{{3 - 2i}}\\ \Leftrightarrow z = \dfrac{{(4 + 2i)(3 + 2i)}}{{9 - 4{i^2}}}\\\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{12 + 4{i^2} + 14i}}{{13}}\\\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{8}{{13}} + \dfrac{{14}}{{13}}i\\ \Rightarrow \overline z  = \dfrac{8}{{13}} - \dfrac{{14}}{{13}}i\end{array}\)

Câu 10: C

\(\begin{array}{l}{z^2} - 6z + 11 = 0\\ \Leftrightarrow \left( {{z^2} - 6z + 9} \right) + 2 = 0\\ \Leftrightarrow {(z - 3)^2} + 2 = 0\\ \Rightarrow \left[ \begin{array}{l}z - 3 = i\sqrt 2 \\z - 3 =  - i\sqrt 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}z = 3 + i\sqrt 2 \\z = 3 - i\sqrt 2 \end{array} \right.\end{array}\)

Câu 11: C

Câu 12: A

\({\rm{w}} = 2z + \overline z  = 2(1 + 2i) + (1 - 2i) \)\(\,= 3 + 2i\)

phần thực: 3   ,   phần  ảo: 2

Câu 13: C

\(\left\{ \begin{array}{l}x + 2y = 1 + i\\3x + iy = 2 - 3i\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}x = 1 + i - 2y{\rm{       (1)}}\\3x + iy = 2 - 3i{\rm{   (2)}}\end{array} \right.\)

Thay (1) vào (2) ta được:

\(\begin{array}{l}3(1 + i - 2y) + iy = 2 - 3i\\ \Leftrightarrow ( - 6 + i)y =  - 1 - 6i\\ \Leftrightarrow y = \dfrac{{ - 1 - 6i}}{{ - 6 + i}}\\ \Leftrightarrow y = \dfrac{{\left( { - 1 - 6i} \right)\left( { - 6 - i} \right)}}{{36 - {i^2}}} = i\end{array}\)

Thay y = i vào (1) \( \Rightarrow x = 1 - i\)

Câu 14: C

Với phần thực bằng 12, nên số phức z có dạng \(z = 12 + bi\)

\(\begin{array}{l}\left| z \right| = 13 \Rightarrow \left| {12 + bi} \right| = 13\\ \Leftrightarrow \sqrt {{{12}^2} + {b^2}}  = 13\\ \Leftrightarrow {b^2} = 25\\ \Leftrightarrow \left[ \begin{array}{l}b = 5 \Rightarrow z = 12 + 5i\\b =  - 5 \Rightarrow z = 12 - 5i\end{array} \right.\end{array}\)

Câu 15: D

\(\begin{array}{l}{z^2} - 2z + 3 = 0\\ \Leftrightarrow \left( {{z^2} - 2z + 1} \right) + 2 = 0\\ \Leftrightarrow {\left( {z - 1} \right)^2} + 2 = 0\\ \Leftrightarrow {\left( {z - 1} \right)^2} =  - 2\\ \Rightarrow \left[ \begin{array}{l}z - 1 = i\sqrt 2 \\z - 1 =  - i\sqrt 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}z = 1 + i\sqrt 2 \\z = 1 - i\sqrt 2 \end{array} \right.\end{array}\)

Câu 16: A

Câu 17: B

Câu 18: B

Câu 19: A

\(\begin{array}{l}{z_1} + {z_2} = 3 - 4i + 4 + 3i = 7 - i\\ \Rightarrow \left| {{z_1} + {z_2}} \right| = 5\sqrt 2 \end{array}\)

Câu 20: D

Câu 21: A

\(\begin{array}{l}z = \dfrac{{5 + 5i}}{{3 - 4i}} + \dfrac{{20}}{{4 + 3i}}\\\,\,\,\, = \dfrac{{5\left( {1 + i} \right)\left( {3 + 4i} \right)}}{{9 - 16{i^2}}} + \dfrac{{20\left( {4 - 3i} \right)}}{{16 - 9{i^2}}}\\\,\,\,\, = \dfrac{{5(3 + 4{i^2} + 7i) + 20(4 - 3i)}}{{25}}\\\,\,\,\, = \dfrac{{5( - 1 + 7i) + 20\left( {4 - 3i} \right)}}{{25}} = 3 - i\end{array}\)

Câu 22: D

Đặt \(z= x+yi\)

\(\begin{array}{l}\left| {z + 1 + i} \right| \le 2\\ \Rightarrow \left| {x + yi + 1 + i} \right| \le 2\\ \Leftrightarrow \left| {\left( {x + 1} \right) + \left( {y + 1} \right)} \right| \le 2\\ \Leftrightarrow \sqrt {{{\left( {x + 1} \right)}^2} + {{\left( {y + 1} \right)}^2}}  \le 2\end{array}\)

Vậy  tập hợp các điểm biểu diễn số phức z là hình tròn tâm I(-1, -1), bán kính bằng 2

Câu 23: D

Câu 24: C

Câu 25: D

\(\begin{array}{l}\left( {3 + 2i} \right)z + {\left( {2 - i} \right)^2} = 4 + i\\ \Leftrightarrow \left( {3 + 2i} \right)z + (3 - 4i) = 4 + i\\ \Leftrightarrow \left( {3 + 2i} \right)z = 1 + 5i\\ \Leftrightarrow z = \dfrac{{1 + 5i}}{{3 + 2i}}\\ \Leftrightarrow z = \dfrac{{\left( {1 + 5i} \right)\left( {3 - 2i} \right)}}{{9 - 4{i^2}}}\\ \Leftrightarrow z = \dfrac{{13 + 13i}}{{13}} = 1 + i\\{\rm{w}} = (z + 1)\overline z  = (2 + i)(1 - i)\\\,\,\,\,\,\, = 2 - {i^2} - i = 3 - i\\ \Rightarrow \left| {\rm{w}} \right| = \sqrt {10} \end{array}\)


Bài Tập và lời giải

Trả lời câu hỏi 1 Bài 1 trang 81 SGK Toán 7 Tập 1
Em hãy nhận xét quan hệ về cạnh,về đỉnh của \(\widehat {{O_1}}\) và \(\widehat {{O_3}}\)

Xem lời giải

Trả lời câu hỏi 2 Bài 1 trang 81 SGK Toán 7 Tập 1
Hai góc \({O_2}\) và \({O_4}\) (h.1)có là hai góc đối đỉnh không. Vì sao?

Xem lời giải

Trả lời câu hỏi 3 Bài 1 trang 81 SGK Toán 7 Tập 1

Đề bài

Xem hình \(1\):

a) Hãy đo góc \(O_1\), góc \(O_3\). So sánh số đo hai góc đó.

b) Hãy đo góc \(O_2\), góc \(O_4\). So sánh số đo hai góc đó.

c) Dự đoán kết quả rút ra từ câu a) , b).

 

Xem lời giải

Bài 1 trang 82 SGK Toán 7 tập 1
Vẽ hai đường thẳng \(xx'\) và \(yy'\) cắt nhau tại \(O\) như hình \(2.\) Hãy điền vào chỗ trống (...) trong các phát biểu sau:a) Góc \(xOy\) và góc ... là hai góc đối đỉnh vì cạnh \(Ox\) là tia đối của cạnh \(Ox'\) và cạnh \(Oy\) là ... của cạnh \(Oy'.\)b) Góc \(x'Oy\) và góc \(xOy'\) là ... vì cạnh \(Ox\) là tia đối của cạnh ... và cạnh ...

Xem lời giải

Bài 2 trang 82 SGK Toán 7 tập 1
Hãy điền vào chỗ trống (...) trong các phát biểu sau:a) Hai góc có mỗi cạnh của góc này là tia đối của một cạnh của góc kia được gọi là hai góc ...b) Hai đường thẳng cắt nhau tạo thành hai cặp góc ...

Xem lời giải

Bài 3 trang 82 SGK Toán 7 tập 1
Vẽ hai đường thẳng \(zz'\) và \(tt'\) cắt nhau tại \(A.\) Hãy viết tên hai cặp góc đối đỉnh.

Xem lời giải

Bài 4 trang 82 SGK Toán 7 tập 1
Vẽ góc \(xBy\) có số đo bằng \(60^{\circ}\). Vẽ góc đối đỉnh với góc \(xBy.\) Hỏi góc này có số đo bằng bao nhiêu độ?

Xem lời giải

Bài 5 trang 82 SGK Toán 7 tập 1

Đề bài

a) Vẽ góc \(ABC\) có số đo bằng \(56^{\circ}.\)

b) Vẽ góc \(ABC'\) kề bù với góc \(ABC.\) Hỏi số đo của góc \(ABC'\)?

c) Vẽ góc \(C'BA'\) kề bù với góc \(ABC'\). Tính số đo của góc \(C'BA'.\)

Xem lời giải

Bài 6 trang 83 SGK Toán 7 tập 1
Vẽ hai đường thẳng cắt nhau sao cho trong các góc tạo thành có một góc \(47^{\circ}\). Tính số đo các góc còn lại.

Xem lời giải

Bài 7 trang 83 SGK Toán 7 tập 1

Đề bài

Ba đường thẳng \(xx', yy', zz'\) cùng đi qua điểm \(O.\) Hãy viết tên các cặp góc bằng nhau.

Xem lời giải

Bài 8 trang 83 SGK Toán 7 tập 1

Đề bài

Vẽ hai góc có chung đỉnh và có cùng số đo là \(70^{\circ}\), nhưng không đối đỉnh.

Xem lời giải

Bài 9 trang 83 SGK Toán 7 tập 1

Đề bài

Vẽ góc vuông \(xAy.\) Vẽ góc \(x'Ay'\) đối đỉnh với góc \(xAy.\) Hãy viết tên hai góc vuông không đối đỉnh.

Xem lời giải

Bài 10 trang 83 SGK Toán 7 tập 1
Hãy vẽ một đường thẳng màu đỏ cắt một đường thẳng màu xanh trên một tờ giấy (giấy trong hoặc giấy mỏng).Phải gấp tờ giấy như thế nào để chứng tỏ hai góc đối đỉnh thì bằng nhau?

Xem lời giải

Đề kiểm tra 15 phút - Đề số 1 - Bài 1 - Chương 1 - Hình học 7

Đề bài

Hai đường thẳng xx’ và yy’ cắt nhau tại A, biết \(\widehat {xAy} = {36^o}.\)

a) Tính các góc \(\widehat {yAx'},\widehat {x'Ay'}\) và \(\widehat {y'Ax}.\)

b) Vẽ tia phân giác At của \(\widehat {xAy}\) và tia phân giác của \(\widehat {x'Ay'}.\) Chứng tỏ rằng hai tia At và At’ là hai tia đối nhau.

Xem lời giải

Đề kiểm tra 15 phút - Đề số 2 - Bài 1 - Chương 2 - Hình học 7

Đề bài

Trên đường thẳng xx’ lấy một điểm O. Trên nửa mặt phẳng bờ xx’ vẽ tia Oy sao cho \(\widehat {x'Oy'}\) \(\widehat {xOy} = {45^o}.\) Trên nửa mặt phẳng kia vẽ tia Oz sao cho \(Oz \bot O\) x. Gọi Oy’ là tia phân giác của \(\widehat {x'Oz}.\)

a) Chứng minh \(\widehat {xOy}\) và \(\widehat {x'Oy'}\) là hai góc đối đỉnh.

b) Trên nửa mặt phẳng bờ xx’ có chứa tia Oy vẽ tia Ot sao cho \(Ot \bot Oy.\) Hãy tính \(\widehat {x'Ot}.\)

Xem lời giải

Đề kiểm tra 15 phút - Đề số 3 - Bài 1 - Chương 1 - Hình học 7

Đề bài

Hai đường thẳng AB và CD cắt nhau tại O sao cho góc \(\widehat {AOC} = {60^o}.\)

a) Tính số đo các góc còn lại.

b) Vẽ tia Ot là tia phân giác của \(\widehat {AOC}\)và Ot’ là tia đối của tia Ot. Chứng minh Ot’ là tia phân giác của góc \(\widehat {BOD}.\)

Xem lời giải

Đề kiểm tra 15 phút - Đề số 4 - Bài 1 - Chương 1 - Hình học 7

Đề bài

Cho hai góc kề bù \(\widehat {xOy}\) và \(\widehat {yOz}.\) Gọi Om, On lần lượt là các tia phân giác của \(\widehat {xOy}\) và \(\widehat {yOz}.\)

a) Tính số đo góc \(\widehat {mOn}.\)

b) Vẽ góc \(\widehat {zOy'}\) là góc đối đỉnh với góc \(\widehat {xOy}\) và Om’ là tia đối của tia Om. Chứng minh Om’ là tia phân giác của góc \(\widehat {y'Oz}\) và On là tia phân giác ảu góc \(\widehat {mOm'}.\)

Xem lời giải

Đề kiểm tra 15 phút - Đề số 5 - Bài 1 - Chương 1 - Hình học 7

Đề bài

Bài 1: Cho hai góc kề \(\widehat {AOB}\) và \(\widehat {BOC}.\)

a) Hãy vẽ các góc \(\widehat {A'OB'}\) và \(\widehat {B'OC'}.\) Lần lượt đối đỉnh với \(\widehat {AOB}\) và \(\widehat {BOC}.\)

b) Cho \(\widehat {AOB} = {55^o},\) hãy tính số đo các góc \(\widehat {A'OB'}\) và \(\widehat {BOA'}.\)

Bài 2: . Cho hình vẽ bên.

Hãy tính

 \(\widehat {xOy}\) và \(\widehat {yOx'}.\)

 

Xem lời giải