Đề kiểm tra 45 phút (1 tiết) - Đề số 5 - Chương II - Giải Tích 12

Câu 1. Tập nghiệm của bất phương trình \({\left( {{{\log }_2}x} \right)^2} - 4{\log _2}x + 3 > 0\)  là:

A. \((0;2) \cup (8; + \infty )\).      

B. \(( - \infty ;2) \cup (8; + \infty )\).

C. \((2;8)\)                 

D. \((8; + \infty )\).

Câu 2.  Cho hàm số \(y = {2^x} - 2x\). Khẳng định nào sau đây sai :

A. Đồ thị hàm số luôn cắt trục tung.

B. Hàm số có giá trị nhỏ nhất lớn hơn -1.

C. Đồ thị hàm số cắt trục hoành tại duy nhất một điểm

D. Đồ thị hàm số luôn cắt đường thẳng y = 2

Câu 3. Nếu \({\log _a}x = {1 \over 2}{\log _a}9 - {\log _a}5 + {\log _a}2\,\,\,\,(a > 0,\,a \ne 1)\) thì x bằng:

A. \({2 \over 5}\)                         B. \({3 \over 5}\) 

C. \({6 \over 5}\)                         D. \(3\).

Câu 4. Cho \(f(x) = \root 3 \of {{{x - 2} \over {x + 1}}} \).  Đạo hàm f’(0) bằng:

A. 1                           B. \({1 \over {\root 3 \of 4 }}\)                        

C. \(\root 3 \of 2 \)                          D. 4.

Câu 5. Đạo hàm của hàm số \(y = {\log _3}\left( {1 + \sqrt x } \right)\) là:

A. \(y' = {1 \over {(1 + \sqrt x )\ln 3}}\)        

B. \(y' = {1 \over {\sqrt x (1 + \sqrt x )\ln 3}}\).

C. \(y' = {1 \over {2\sqrt x \ln 3}}\)                           

D. \(y' = {1 \over {2(\sqrt x  + x)\ln 3}}\).

Câu 6. Cho  x,  y là hai số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây sai ?

A. \({x^m}.{x^n} = {x^{m + n}}\)               

B. \({\left( {{x^n}} \right)^m} = {x^{nm}}\).

C. \({\left( {xy} \right)^n} = {x^n}.{y^n}\)                         

D. \({x^m}.{y^n} = {\left( {xy} \right)^{m + n}}\).

Câu 7. Tập nghiệm của bất phương trình \({\log _{{1 \over 2}}}(2x - 2) > {\log _{{1 \over 2}}}(x + 1)\) là:

A. \((2; + \infty )\)                 B. \(\left( {1;3} \right)\)      

C. \(( - \infty ;3)\)                  D. \(\left( { - {1 \over 2};2} \right)\).

Câu 8.  Nghiệm của phương trình \({\log _2}({\log _4}x) = 1\) là:

A. x = 16                        B. x = 8   

C. x = 4                          D. x = 2.

Câu 9. Biết phương trình \({9^x} - {28.3^x} + 27 = 0\) có hai nghiệm x1 và x2. Tính tổng x1 + x2 ?

A. 0                            B. 1   

C. 2                            D. 3

Câu 10. Cho biểu thức \({a^{{1 \over {\sqrt 3 }}}} > {a^{{1 \over {\sqrt 2 }}}}\,\,;\,\,\,{\log _b}{3 \over 4} < {\log _b}{4 \over 5}\) thì a và  b thuộc:

A. 0  < a < 1, b > 1.      

B. a > 1, b > 1.

C. 0 < a < 1, 0 < b < 1     

D. a > 1, 0 < b <1.

Câu 11. Nghiệm của bất phương trình \({\log _2}({3^x} - 2) < 0\) là:

A. x < 1                          B. \({\log _3}2 < x < 1\)

C. 0 < x < 1                   D. x > 1.

Câu 12. Cho hàm số \(y = {e^x}(\sin x - \cos x)\). Ta có y’ bằng:

A. \(2{e^x}\sin x\)                    B. \( - 2{e^x}\sin x\)  C. \( - 2{e^x}\cos x\)                D. \(2{e^x}\cos x\)

Câu 13. Biểu thức \(\left( {\root 3 \of a  + \root 3 \of b } \right)\left( {{a^{{2 \over 3}}} + {b^{{2 \over 3}}} - \root 3 \of {ab} } \right)\) có giá trị  ( với a, b dương) là:

A. \({a^{{2 \over 3}}} + {b^{{2 \over 3}}}\)                

B. a – b                        

C. a + b    

D. \({a^{{3 \over 2}}} + {b^{{3 \over 2}}}\).

Câu 14. Gọi x1, x2 là hai nghiệm của phương trình \({\log _3}^2x - 3{\log _3}x + 2 = 0\). Giá trị biểu thức \(P = {x_1}^2 + {x_2}^2\) bằng bao nhiêu ?

A. 20                              B. 92   

C. 90                              D. 9

Câu 15. Rút gọn biểu thức \(P = {a^{{5 \over 3}}}:\sqrt a \,\,\,\,\,(a > 0)\) .

A. \(P = {a^{{2 \over 3}}}\)    

B. \(P = {a^{{{ - 2} \over 3}}}\)                   

C. \(P = {a^{{4 \over 3}}}\)    

D. \(P = {a^{{7 \over 6}}}\)

Câu 16. Tập nghiệm của bất phương trình \({3^x} \ge 5 - 2x\) là:

A. \([1; + \infty )\)                   B. \(\emptyset \)   

C. \((1; + \infty )\)                   D. \(( - \infty ;1]\).

Câu 17. Cho \(a > 0,\,n \in Z,n \ge 2\), chọn khẳng định đúng:

A. \({a^{{1 \over n}}} = \root n \of a \)    

B. \({a^{{1 \over n}}} = \sqrt {{a^n}} \)              

C. \({a^{{1 \over n}}} = {a^n}\)  

D. \({a^{{1 \over n}}} = \root a \of n \)

Câu 18. Chọn mệnh đề đúng :

A. \({\log _a}1 = 1\)               

B. \({\log _a}a = a\)              

C. \({\log _a}1 = a\)                

D. \({\log _a}a = 1\)

Câu 19. Với các số thực a, b > 0 bất kì. Rút gọn biểu thức \(P = 2{\log _2}a - {\log _{{1 \over 2}}}{b^2}\):

A. \(P = {\log _2}{\left( {{a \over b}} \right)^2}\)             

B. \(P = {\log _2}\left( {{{2a} \over {{b^2}}}} \right)\).

C. \(P = {\log _2}(2a{b^2})\)         

D. \(P = {\log _2}{(ab)^2}\).

Câu 20. Cho các số thực a < b < 0. Mệnh đề nào sau đây sai ?

A. \(\ln {(ab)^2} = \ln ({a^2}) + \ln ({b^2})\).

B. \(\ln \left( {\sqrt {ab} } \right) = {1 \over 2}\left( {\ln a + \ln b} \right)\)

C. \(\ln \left( {{a \over b}} \right) = \ln |a| - \ln |b|\).

D. \(\ln {\left( {{a \over b}} \right)^2} = \ln ({a^2}) - \ln ({b^2})\).

Câu 21. Bất phương trình \({\log _{{1 \over 3}}}{{3x - 1} \over {x + 2}} < 1\) có nghiệm là:

A. \(x = {3 \over 4}\)                                    

B. \(x = 4\)

C. \(x \in ( - \infty ; - 2) \cup \left( {{5 \over 8}; + \infty } \right)\)

D. \(x \in ( - 9;2) \cup (8; + \infty )\).

Câu 22. Biểu thức \({a^3} + {a^{ - 3}}\) bằng:

A. \(\left( {a - {1 \over a}} \right)\left( {{a^2} - 2 + {1 \over {{a^2}}}} \right)\).                                    B. \(\left( {a + {1 \over a}} \right)\left( {{a^2} - 1 + {1 \over {{a^2}}}} \right)\).

C. \(\left( {{1 \over a} - a} \right)\left( {{a^2} + 1 + {1 \over {{a^2}}}} \right)\)                                       D. \(\left( {a - {1 \over a}} \right)\left( {{a^2} + 1 + {1 \over {{a^2}}}} \right)\).

Câu 23. Biết \(3 + 2{\log _2}x = {\log _2}y\(. Hãy biểu thị y theo x.

A. \(y = 2x + 3\)     

B. \(y = 8{x^2}\).

C. \(y = {x^2} + 8\)         

D. \(y = 3{x^2}\).

Câu 24. Với \(0 < x \ne 1\) , biểu thức \({1 \over {{{\log }_3}x}} + {1 \over {{{\log }_4}x}} + {1 \over {{{\log }_5}x}}\) bằng

A. \({1 \over {{{\log }_x}60}}\)                                                      

B. \({1 \over {({{\log }_3}x)({{\log }_4}x)({{\log }_5}x)}}\).

C. \({1 \over {{{\log }_{60}}x}}\)         

D. \({1 \over {{{\log }_3}x + {{\log }_4}x + {{\log }_5}x}}\).

Câu 25. Tìm miền xác định của hàm số \(y = \log \left( {{{1 - 5x} \over {2 - x}}} \right)\).

A. \(D = \left( { - \infty ;{1 \over 5}} \right) \cup \left( {2; + \infty } \right)\).             

B. \(D = \left( { - \infty ;2} \right) \cup \left( {{1 \over 5}; + \infty } \right)\).

C. \(D = ( - \infty ;2] \cup \left[ {{1 \over 5}; + \infty } \right)\)  

D. \(\left( { - \infty ;{1 \over 5}} \right) \cap \left( {2; + \infty } \right)\).

Lời giải

Câu

1

2

3

4

5

Đáp án

A

C

C

B

D

Câu

6

7

8

9

10

Đáp án

D

B

A

D

A

Câu

11

12

13

14

15

Đáp án

B

A

C

C

D

Câu

16

17

18

19

20

Đáp án

A

A

D

D

B

Câu

21

22

23

24

25

Đáp án

C

B

B

A

A

Câu 1.

Điều kiện: \(x > 0\)

Ta có: \({\left( {{{\log }_2}x} \right)^2} - 4{\log _2}x + 3 > 0 \)

\(\Leftrightarrow \left( {{{\log }_2}x - 1} \right)\left( {{{\log }_2}x - 3} \right) > 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{\log _2}x - 1 > 0\\{\log _2}x - 3 > 0\end{array} \right.\\\left\{ \begin{array}{l}{\log _2}x - 1 < 0\\{\log _2}x - 3 < 0\end{array} \right.\end{array} \right.\)

\(\Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 2\\x > 8\end{array} \right.\\\left\{ \begin{array}{l}x < 2\\x < 8\end{array} \right.\end{array} \right. \)

\(\Leftrightarrow x \in \left( { - \infty ;2} \right) \cup \left( {8; + \infty } \right)\)

Chọn đáp án B.

Câu 2. 

Phương trình hoành độ giao điểm của hàm số vói trục hoành là:

\({2^x} - 2x = 0 \Leftrightarrow {2^x} = 2x \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\)

Khẳng định C sai.

Chọn đáp án C.

Câu 3.

Ta có: \({\log _a}x = \dfrac{1}{2}{\log _a}9 - {\log _a}5 + {\log _a}2\, \)\(= {\log _a}3 - {\log _a}5 + {\log _a}2\)

\( \Leftrightarrow {\log _a}x = {\log _a}6 - {\log _a}5 = {\log _a}\dfrac{6}{5} \)

\(\Leftrightarrow x = \dfrac{6}{5}.\)

Chọn đáp án C.

Câu 4.

Ta có: \(f(x) = \sqrt[3]{{\dfrac{{x - 2}}{{x + 1}}}}\)

 

Khi đó \(f'\left( 0 \right) = \dfrac{1}{{\sqrt[4]{3}}}\).

Câu 5.

Ta có:

\(\begin{array}{l}y' = [{\log _3}\left( {1 + \sqrt x } \right)]'\\\;\;\; = \dfrac{{{{\left( {1 + \sqrt x } \right)}^\prime }}}{{\left( {1 + \sqrt x } \right)\ln 3}}\\\;\;\; = \dfrac{1}{{2\sqrt x \left( {1 + \sqrt x } \right)\ln 3}} \\\;\;\;= \dfrac{1}{{2\left( {x + \sqrt x } \right)\ln 3}}\\\end{array}\)

Chọn đáp án D.

Câu 6.

Đẳng thức sai là \({x^m}.{y^n} = {\left( {xy} \right)^{m + n}}\)

Chọn đáp án D.

Câu 7.

Điều kiện: \(x > 1.\)

Ta có: \({\log _{\dfrac{1}{2}}}(2x - 2) > {\log _{\dfrac{1}{2}}}(x + 1)\)

\(\Leftrightarrow 2x - 2 < x + 1\)

\( \Leftrightarrow x < 3\)

Kết hợp điều kiện: \(x \in \left( {1;3} \right)\)

Chọn đáp án B.

Câu 8. 

Điều kiện: \(\left\{ \begin{array}{l}{\log _4}x > 0\\x > 0\end{array} \right. \Leftrightarrow x > 1\)

Ta có: \({\log _2}({\log _4}x) = 1 \Leftrightarrow {\log _4}x = 2 \)

\(\Leftrightarrow x = {4^2} = 16.\)

Chọn đáp án A.

Câu 9.

Ta có: \({9^x} - {28.3^x} + 27 = 0\)

\(\Leftrightarrow {\left( {{3^x}} \right)^2} - 28\left( {{3^x}} \right) + 27 = 0\)

\( \Leftrightarrow \left( {{3^x} - 1} \right)\left( {{3^x} - 27} \right) = 0 \)

\(\Leftrightarrow \left[ \begin{array}{l}{3^x} = 1\\{3^x} = 27\end{array} \right. \)

\(\Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 3\end{array} \right.\)

Khi đó \({x_1} + {x_2} = 3.\)

Chọn đáp án D.

Câu 10.

Ta có: \({a^{\dfrac{1}{{\sqrt 3 }}}} > {a^{\dfrac{1}{{\sqrt 2 }}}}\,\,;\)

\({\log _b}\dfrac{3}{4} < {\log _b}\dfrac{4}{5}\)

\(\Rightarrow \left\{ \begin{array}{l}0 < a < 1\\b > 1\end{array} \right.\)

Chọn đáp án A.

Câu 11.

Điều kiện: \({3^x} > 2\)\( \Leftrightarrow x > {\log _3}2\)

Ta có: \({\log _2}({3^x} - 2) < 0\)

\(\Leftrightarrow {3^x} - 2 < 1 \)

\(\Leftrightarrow {3^x} < 3 \)

\(\Leftrightarrow x < 1.\)

Chọn đáp án B.

Câu 12.

Ta có: \(y = {e^x}(\sin x - \cos x) \)

\(\Rightarrow y' = {e^x}(\sin x - \cos x) + {e^x}\left( {\cos x + \sin x} \right) \)\(\,= 2{e^x}\sin x\)

Chọn đáp án A.

Câu 13.

Ta có: \(\left( {\sqrt[3]{a} + \sqrt[3]{b}} \right)\left( {{a^{\dfrac{2}{3}}} + {b^{\dfrac{2}{3}}} - \sqrt[3]{{ab}}} \right) \)

\(\,= \left( {{a^{\dfrac{1}{3}}} + {b^{\dfrac{1}{3}}}} \right)\left( {{a^{\dfrac{2}{3}}} + {b^{\dfrac{2}{3}}} - {a^{\dfrac{1}{3}}}{b^{\dfrac{1}{3}}}} \right) \)

\(= a + b\)

Chọn đáp án C.

Câu 14.

Điều kiện: \(x > 0\)

Ta có: \({\log _3}^2x - 3{\log _3}x + 2 = 0\)

\(\Leftrightarrow \left( {{{\log }_3}x - 1} \right)\left( {{{\log }_3}x - 2} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}{\log _3}x = 1\\{\log _3}x = 2\end{array} \right. \)

\(\Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 9\end{array} \right.\)

Khi đó ta có: \(P = {x_1}^2 + {x_2}^2 = {3^2} + {9^2} = 90.\)

Chọn đáp án C.

Câu 15.

Ta có: \(P = {a^{\dfrac{5}{3}}}:\sqrt a \,\, = {a^{\dfrac{5}{3}}}:{a^{\dfrac{1}{2}}} \)\(\,= {a^{\dfrac{5}{3} - \dfrac{1}{2}}} = {a^{\dfrac{7}{6}}}\)

Chọn đáp án D.

Câu 16.

Xét hàm số: \(y = {3^x} + 2x - 5\)\(\, \Rightarrow y' = {3^x}\ln 3 + 2 > 0\)

\( \to \) Hàm số đồng biến trên tập xác định.

Khi đó ta có: \(y\left( 1 \right) = 0\)\( \Rightarrow \) Bất phương trình đã cho có tập nghiệm là \([1; + \infty )\)

Chọn đáp án A.

Câu 17.

Với \(a > 0,\,n \in Z,n \ge 2\) ta có \({a^{\dfrac{1}{n}}} = \sqrt[n]{a}\)

Chọn đáp án A.

Câu 18.

Ta có: \({\log _a}a = 1\) là mệnh đề đúng.

Chọn đáp án D.

Câu 19.

Ta có: \(P = 2{\log _2}a - {\log _{\dfrac{1}{2}}}{b^2} \)

\(= 2{\log _2}a + {\log _2}b{}^2 = 2{\log _2}a + 2{\log _2}b\)

\(= 2{\log _2}\left( {ab} \right) = {\log _2}{\left( {ab} \right)^2}\)

Chọn đáp án D.

Câu 20.

Điều kiện của hàm logarit là \(a,b > 0\)

Khi đó ta có: \(\ln \left( {\sqrt {ab} } \right) = \dfrac{1}{2}\left( {\ln a + \ln b} \right)\) là mệnh đề sai.

Chọn đáp án B.

Câu 21.

Điều kiện: \(\dfrac{{3x - 1}}{{x + 2}} > 0\)

\(\Leftrightarrow x \in \left( { - \infty ; - 2} \right) \cup \left( {\dfrac{1}{3}; + \infty } \right)\)

Khi đó ta có: \({\log _{\dfrac{1}{3}}}\dfrac{{3x - 1}}{{x + 2}} < 1\)

\(\Leftrightarrow \dfrac{{3x - 1}}{{x + 2}} > \dfrac{1}{3} \)

\(\Leftrightarrow \dfrac{{8x - 5}}{{3\left( {x + 2} \right)}} > 0\)

\( \Leftrightarrow x \in \left( { - \infty ; - 2} \right) \cup \left( {\dfrac{5}{8}; + \infty } \right)\)

Khết hợp điều kiện: \(x \in ( - \infty ; - 2) \cup \left( {\dfrac{5}{8}; + \infty } \right)\)

Chọn đáp án C.

Câu 22.

Ta có: \({a^3} + {a^{ - 3}} = {a^3} + \dfrac{1}{{{a^3}}} \)\(\,= \left( {a + \dfrac{1}{a}} \right)\left( {{a^2} + \dfrac{1}{{{a^2}}} - 1} \right)\)

Chọn đáp án B.

Câu 23.

Ta có: \(3 + 2{\log _2}x = {\log _2}y\)

\(\Leftrightarrow {\log _2}y = {\log _2}{x^2} + {\log _2}{2^3} = {\log _2}\left( {8{x^2}} \right)\)

Khi đó ta có: \(y = 8{x^2}\)

Chọn đáp án B.

Câu 24.

Ta có: \(\dfrac{1}{{{{\log }_3}x}} + \dfrac{1}{{{{\log }_4}x}} + \dfrac{1}{{{{\log }_5}x}}\)

\(= {\log _x}3 + {\log _x}4 + {\log _x}5 = {\log _x}\left( {3.4.5} \right) \)

\(= {\log _x}60 = \dfrac{1}{{{{\log }_{60}}x}}\)

Chọn đáp án C.

Câu 25.

Điều kiện xác định: \(\dfrac{{1 - 5x}}{{2 - x}} > 0 \)

\(\Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}1 - 5x > 0\\2 - x > 0\end{array} \right.\\\left\{ \begin{array}{l}1 - 5x < 0\\2 - x < 0\end{array} \right.\end{array} \right.\)

\(\Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x < \dfrac{1}{5}\\x < 2\end{array} \right.\\\left\{ \begin{array}{l}x > \dfrac{1}{5}\\x > 2\end{array} \right.\end{array} \right. \)

\(\Leftrightarrow \left[ \begin{array}{l}x < \dfrac{1}{5}\\x > 2\end{array} \right.\)

Chọn đáp án A.


Bài Tập và lời giải

Câu 1 trang 50 SGK Tin học lớp 8
Em hãy nêu một vài ví dụ về hoạt động hàng ngày phụ thuộc vào điều kiên?

Xem lời giải

Câu 2 trang 50 SGK Tin học lớp 8

Cho biết các điều kiện hoặc biểu thức sau cho kết quả đúng hay sai

a) 123 là số chia hết cho 3

b) Nếu ba cạnh a, b và c của một tam giác thỏa mãn \({c^2} = {a^2} + {b^2}\) thì tam giác đó có một góc vuông

c) 152  > 200

d) x2 < 1

Xem lời giải

Câu 3 trang 50 SGK Tin học lớp 8
Hai người bạn cùng chơi trò đoán số. Một người nghĩ trong đầu một số tự nhiên nhỏ hơn 10. Người kia đoán xem bạn đã nghĩ số gì. Nếu đoán đúng, người đoán sẽ được cộng thêm 1 điểm, nếu sai sẽ không được cộng điểm. Luân phiên nhau nghĩ và đoán. Sau 10 lần, ai được nhiều điểm hơn, người đó sẽ thắng. Hãy phát biểu quy tắc thực hiện một nước đi ở trò chơi ? Hoạt động nào sẽ được thực hiện, nếu điều kiện đó thoả mãn? Hoạt động nào sẽ được thực hiện, nếu điều kiện đó không thoả mãn?

Xem lời giải

Câu 4 trang 50 SGK Tin học lớp 8
Một trò chơi máy tính rất hứng thú đối với các em nhỏ là hứng trứng. Một quả trứng rơi từ một vị trí ngẫu nhiên trên cao. Người chơi dùng các phím mũi tên ->  hoặc  hoặc <-) thì chiếc khay sẽ dịch chuyển (sang trái hoặc sang phải) một đơn vị khoảng cách . Nếu người chơi k nhấn phím nào hoặc nhấn phím khác hai phím nói trên thì chiếc khay đứng yênĐiều kiện để điều khiển chiếc khay trong trò chơi là gì? Hoạt động nào sẽ được thực hiện, nếu điều kiện đó thoả mãn? Hoạt động nào sẽ được thực hiện, nếu điều kiện đó không thoả mãn?

Xem lời giải

Câu 5 trang 50 SGK Tin học lớp 8

Các câu lệnh Pascal sau đây được viết đúng hay sai?

a) if x:=7 then a=b;

b) if x>5; then a:=b;

c) if x>5 then a:=b; m:=n;

d) if x>5 then a:=b; else m:=n;

Xem lời giải

Câu 6 trang 50 SGK Tin học lớp 8
Với mỗi câu lệnh sau đây giá trị biến X sẽ là bao nhiêu nếu trước đó giá trị của X bằng 5?a) if (45 mod 3)=0 then X:=X+1;b) if X > 10 then X:=X+1;

Xem lời giải