Giả sử ba số \(x, y, z\) lập thành một cấp số nhân với công bội \(q\) ta có: \(y = x.q\) và \(z = y.q = x.q^2\).
Ba số \(x, 2y, 3z\) lập thành một cấp số cộng nên:
\(x + 3z = 4y ⇔ x + 3.(xq^2) = 4.(xq)\)
\(⇔ x. (1 + 3q^2– 4q) = 0 ⇔ x = 0\) hay \(3q^2– 4q + 1 = 0\)
Nếu \(x = 0\) thì \(x = y= z= 0\), \(q\) là một số tùy ý
Nếu \(x ≠ 0\) thì \(3q^2- 4q + 1 = 0⇔\left[ \matrix{q = 1 \hfill \cr q = {1 \over 3} \hfill \cr} \right.\)