a) Ta có:
\(\begin{array}{l}\,\,\,\,\,\,\left\{ \begin{array}{l}5{u_1} + 10{u_5} = 0\\{S_4} = 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5{u_1} + 10\left( {{u_1} + 4d} \right) = 0\\\frac{{\left( {2{u_1} + 3d} \right).4}}{2} = 14\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}15{u_1} + 40d = 0\\2{u_1} + 3d = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 8\\d = - 3\end{array} \right.\end{array}\)
Vậy số hạng đầu \(u_1= 8\), công sai \(d = -3\)
b) Ta có:
\(\left\{ \matrix{ {u_7} + {u_{15}} = 60 \hfill \cr u_4^2 + u_{12}^2 = 1170 \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{ ({u_1} + 6d) + ({u_1} + 14d) = 60\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1) \hfill \cr {({u_1} + 3d)^2} + {({u_1} + 11d)^2} = 1170\,\,\,\,(2) \hfill \cr} \right.\)
\((1) ⇔ 2u_1+ 20d = 60 ⇔ u_1= 30 – 10d\) thế vào \((2)\)
\((2) ⇔[(30 – 10d) + 3d]^2+ [(30 – 10d) + 11d]^2= 1170\)
\(⇔ (30 – 7d)^2+ (30 + d)^2= 1170\)
\(⇔900 – 420d + 49d^2+ 900 + 60d + d^2= 1170\)
\(⇔ 50d^2– 360d + 630 = 0\)
\( \Leftrightarrow \left[ \matrix{ d = 3 \Rightarrow {u_1} = 0 \hfill \cr d = {{21} \over 5} \Rightarrow {u_1} = - 12 \hfill \cr} \right.\)
Vậy \(\left\{ \matrix{{u_1} = 0 \hfill \cr d = 3 \hfill \cr} \right.\) hoặc \(\left\{ \matrix{{u_1} = - 12 \hfill \cr d = {{21} \over 5} \hfill \cr} \right.\)