TXĐ: \(D = \mathbb{R}\).
Ta có: \(y' = 3{x^2} - 6\left( {m - 1} \right)x - 3\left( {m + 3} \right)\).
Hàm số có cực trị nếu đạo hàm đổi dấu trên \(\mathbb{R}\)
\( \Leftrightarrow 3{x^2} - 6\left( {m - 1} \right)x - 3\left( {m + 3} \right) = 0\) có hai nghiệm phân biệt
\( \Leftrightarrow \Delta ' = 9{\left( {m - 1} \right)^2} + 9\left( {m + 3} \right) > 0\) \( \Leftrightarrow 9\left( {{m^2} - m + 4} \right) > 0\) (luôn đúng với \(\forall m\))
Vậy với mọi \(m \in \mathbb{R}\) thì hàm số luôn có cực trị.
Chọn B.