Ta có: \(f'\left( x \right) = 3{x^2} + 6x - 9\); \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1 \in \left[ { - 4;3} \right]\\x = - 3 \in \left[ { - 4;3} \right]\end{array} \right.\)
Mà \(f\left( { - 4} \right) = 13,f\left( { - 3} \right) = 20,\) \(f\left( 1 \right) = - 12,f\left( 3 \right) = 20\).
Vậy \(\mathop {\min }\limits_{\left[ { - 4;3} \right]} f\left( x \right) = - 12\).
Chọn D.