\(a)\) Để cặp \((x; y) = (1; -5)\) là nghiệm của hệ phương trình đã cho, ta thay \(x = 1; y = -5\) vào hệ phương trình ta được:
\(\eqalign{
& \left\{ {\matrix{
{3a + 5b = 88} \cr
{b - 20a = - 3} \cr} } \right. \cr&\Leftrightarrow \left\{ {\matrix{
{b = 20a - 3} \cr
{3a + 5\left( {20a - 3} \right) = 88} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = 20a - 3} \cr
{3a + 100a - 15 = 88} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{b = 20a - 3} \cr
{103a = 103} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = 20a - 3} \cr
{a = 1} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{b = 17} \cr
{a = 1} \cr} } \right. \cr} \)
Vậy \(a = 1\) và \(b = 17.\)
b) Để cặp \((x; y) = (3; -1)\) là nghiệm của hệ phương trình đã cho, ta thay \(x = 3; y = -1\) vào hệ phương trình ta được:
\(\eqalign{
& \left\{ {\matrix{
{3a - 5b = 31} \cr
{6a + b = 7} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{b = 7 - 6a} \cr
{3a - 5\left( {7 - 6a} \right) = 31} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = 7 - 6a} \cr
{33a = 66} \cr} } \right.\cr& \Leftrightarrow \left\{ {\matrix{
{b = 7 - 6a} \cr
{a = 2} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = - 5} \cr
{a = 2} \cr} } \right. \cr} \)
Vậy \(a = 2\) và \(b = -5.\)