Bài 18 trang 9 SBT toán 9 tập 2

Đề bài

Tìm giá trị của \(a\) và \(b\):

\(a)\) Để hệ phương trình

\(\left\{ {\matrix{
{3ax - \left( {b + 1} \right)y = 93} \cr 
{bx + 4ay = - 3} \cr} } \right.\)

có nghiệm là \((x; y) = (1; -5)\);

\(b)\) Để hệ phương trình

\(\left\{ {\matrix{
{\left( {a - 2} \right)x + 5by = 25} \cr 
{2ax - \left( {b - 2} \right)y = 5} \cr} } \right.\)

có nghiệm là \((x; y) = (3; -1)\)

Lời giải

\(a)\) Để cặp \((x; y) = (1; -5)\) là nghiệm của hệ phương trình đã cho, ta thay \(x = 1; y = -5\) vào hệ phương trình ta được:

\(\eqalign{
& \left\{ {\matrix{
{3a + 5b = 88} \cr 
{b - 20a = - 3} \cr} } \right. \cr&\Leftrightarrow \left\{ {\matrix{
{b = 20a - 3} \cr 
{3a + 5\left( {20a - 3} \right) = 88} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = 20a - 3} \cr 
{3a + 100a - 15 = 88} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{b = 20a - 3} \cr 
{103a = 103} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = 20a - 3} \cr 
{a = 1} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{b = 17} \cr 
{a = 1} \cr} } \right. \cr} \)

Vậy \(a = 1\) và \(b = 17.\)

b) Để cặp \((x; y) = (3; -1)\) là nghiệm của hệ phương trình đã cho, ta thay \(x = 3; y = -1\) vào hệ phương trình ta được:

\(\eqalign{
& \left\{ {\matrix{
{3a - 5b = 31} \cr 
{6a + b = 7} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{b = 7 - 6a} \cr 
{3a - 5\left( {7 - 6a} \right) = 31} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = 7 - 6a} \cr 
{33a = 66} \cr} } \right.\cr& \Leftrightarrow \left\{ {\matrix{
{b = 7 - 6a} \cr 
{a = 2} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = - 5} \cr 
{a = 2} \cr} } \right. \cr} \)

Vậy  \(a = 2\) và  \(b = -5.\)