\(a)\)
Vì \(A(-5; 3)\) thuộc đường thẳng \(y = ax + b\) nên tọa độ của \(A\) thỏa mãn phương trình này, nghĩa là \(3 = -5a + b.\)
Vì \(B\displaystyle\left( {{3 \over 2}; - 1} \right)\) thuộc đường thẳng \(y = ax + b\) nên \( - 1 = \displaystyle{3 \over 2}a + b \Leftrightarrow 3a + 2b = - 2\)
Khi đó \(a\) và \(b\) là nghiệm của hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{ - 5a + b = 3} \cr
{3a + 2b = - 2} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{b = 3 + 5a} \cr
{3a + 2\left( {3 + 5a} \right) = - 2} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = 3 + 5a} \cr
{13a = - 8} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 3 + 5a} \cr
{a = \displaystyle- {8 \over {13}}} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = \displaystyle- {1 \over {13}}} \cr
{a = \displaystyle- {8 \over {13}}} \cr} } \right. \cr} \)
Vậy \(a = \displaystyle- {8 \over {13}};b = - {1 \over {13}}.\)
\(b)\)
Tọa độ giao điểm của hai đường thẳng \(({d_1})\): \(2x + 5y = 17,\)
\(({d_2})\): \(4x - 10y = 14\)
là nghiệm của hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{2x + 5y = 17} \cr
{4x - 10y = 14} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{2x + 5y = 17} \cr
{2x - 5y = 7} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = \displaystyle{{7 + 5y} \over 2}} \cr
{ \displaystyle 2\left( {{{7 + 5y} \over 2}} \right) + 5y = 17} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = \displaystyle {{7 + 5y} \over 2}} \cr
{10y = 10} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = \displaystyle{{7 + 5y} \over 2}} \cr
{y = 1} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 6} \cr
{y = 1} \cr} } \right. \cr} \)
Do đó giao điểm của \(({d_1})\) và\(({d_2})\) là \(C(6; 1).\)
Vì \(M(9; -6)\) thuộc đường thẳng \(ax – 8y = b\) nên \(9a + 48 = b\)
Vì \(C(6; 1)\) thuộc đường thẳng \(ax – 8y = b\) nên \(6a – 8 = b\)
Khi đó \(a\) và \(b\) là nghiệm của hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{9a + 48 = b} \cr
{6a - 8 = b} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{b = 6a - 8} \cr
{9a + 48 = 6a - 8} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = 6a - 8} \cr
{3a = - 56} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 6a - 8} \cr
{a = \displaystyle - {{56} \over 3}} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = - 120} \cr
{a = \displaystyle - {{56} \over 3}} \cr} } \right. \cr} \)
Vậy \(a = \displaystyle - {{56} \over 3};b = - 120\).