a) Cộng vế với vế của hai phương trình trong hệ, ta được
\(\left\{\begin{matrix} 3x + y =3 & & \\ 2x - y = 7 & & \end{matrix}\right. \\\Leftrightarrow \left\{\begin{matrix} 3x+y+2x-y =3+7 & & \\ 2x -y = 7& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} 5x =10 & & \\ 2x -y = 7& & \end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{\begin{matrix} x =2 & & \\ y = 2x-7& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x =2 & & \\ 2.2 -y = 7& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} x =2 & & \\ y = -3& & \end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất là \((2; -3)\).
b) Trừ vế với vế của hai phương trình trong hệ, ta được:
\(\left\{\begin{matrix} 2x + 5y =8 & & \\ 2x - 3y = 0& & \end{matrix}\right. \\\Leftrightarrow \left\{\begin{matrix} 2x+5y =8 & & \\ 2x +5y-(2x-3y) = 8-0& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} 2x + 5y =8 & & \\ 8y = 8& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2x + 5y =8 & & \\ y = 1& & \end{matrix}\right. \\\Leftrightarrow \left\{\begin{matrix} 2x+5.1 =8 \\ y = 1& & \end{matrix}\right.\\ \Leftrightarrow \left\{\begin{matrix} x =\dfrac{3}{2} & & \\ y = 1& & \end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất là \({\left(\dfrac{3}{2}; 1\right)}\).
c) Nhân hai vế của phương trình thứ hai với \(2\), rồi trừ vế với vế của hai phương trình trong hệ, ta được:
\(\left\{\begin{matrix} 4x + 3y =6 & & \\ 2x + y = 4& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 4x + 3y =6 & & \\ 4x + 2y =8& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 4x+3y =6 & & \\ 4x +3y-(4x+2y) = 6-8& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} 4x + 3y =6 & & \\ y = -2& & \end{matrix}\right. \\\Leftrightarrow \left\{\begin{matrix} 4x+3.(-2) =6 & & \\ y = -2& & \end{matrix}\right.\\ \Leftrightarrow \left\{\begin{matrix} 4x =12 & & \\ y = -2& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} x =3 & & \\ y = -2& & \end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất là \((3; -2)\).
d) Nhân hai vế của phương trình thứ nhất với \(3\), nhân hai vế của phương trình thứ hai với \(2\), rồi trừ vế với vế của hai phương trình trong hệ, ta được
\(\left\{\begin{matrix} 2x + 3y =-2 & & \\ 3x -2y = -3& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 6x + 9y = -6 & & \\ 6x - 4y = -6& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 6x+9y =-6 & & \\ 6x +9y-(6x-4y) = -6-(-6)& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} 6x + 9y = -6 & & \\ 13y = 0& & \end{matrix}\right. \Leftrightarrow\) \(\left\{\begin{matrix} x = -1 & & \\ y = 0 & & \end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất là \((-1; 0)\).
e) Nhân hai vế của phương trình thứ nhất với \(5\) rồi trừ vế với vế của hai phương trình trong hệ, ta được:
\(\left\{\begin{matrix} 0,3x + 0,5y =3 & & \\ 1,5x -2y = 1,5& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 1,5x + 2,5y=15 & & \\ 1,5x - 2y = 1,5 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 1,5x+2,5y =15 & & \\ 1,5x +2,5y-(1,5x-2y) = 15-1,5& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} 1,5x + 2,5y=15 & & \\ 4,5y = 13,5 & & \end{matrix}\right. \)
\(\Leftrightarrow \left\{\begin{matrix} 1,5x =15 -2, 5 . 3& & \\ y = 3 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 1,5x =7,5& & \\ y = 3 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x =5& & \\ y = 3 & & \end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất là \((5; 3)\).