Bài 23 trang 76 SGK Toán 9 tập 2

Cho đường tròn \((O)\) và một điểm \(M\) cố định không nằm trên đường tròn. Qua \(M\) kẻ hai đường thẳng. Đường thẳng thứ nhất cắt \((O)\) tại \(A\) và \(B\).Đường thẳng thứ nhất cắt \((O)\) tại \(C\) và \(D\).

Chứng minh \(MA. MB = MC. MD\)

Lời giải

Xét hai trường hợp:

a) \(M\) ở bên trong đường tròn (hình a)

Xét hai tam giác \(MAD\) và \(MCB\) có:

              \(\widehat{AMD}\) = \(\widehat{CMB}\) ( đối đỉnh)

              \(\widehat{ADM}\) = \(\widehat{CBM}\) (hai góc nội tiếp cùng chắn cung  \(AC\)).

Do đó \(∆MAD\) đồng dạng \(∆MCB\) (g-g), suy ra:

\(\dfrac{MA}{MC}=\dfrac{MD}{MB}\), do đó \(MA. MB = MC. MD\)

b) M ở bên ngoài đường tròn (hình b)

Tương tự, xét hai tam giác \(MAD\) và \(MCB\) có:

     \(\widehat{M}\) chung  

     \(\widehat{MDA}\) = \(\widehat{MBC}\) (hai góc nội tiếp cùng chắn cung \(AC\)).

Nên \(∆MAD\) đồng dạng \(∆MCB\) (g-g)

Suy ra:     \(\dfrac{MA}{MC}=\dfrac{MD}{MB}\)

hay \(MA. MB = MC. MD\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”