Ta có c = 6 là cạnh lớn nhất của tam giác. Do đó \(\widehat C\) là góc lớn nhất.
\(\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\)\( = \dfrac{{{3^2} + {4^2} + {6^2}}}{{2.3.4}} = - \dfrac{{11}}{{24}}\) \( \Rightarrow \widehat C \approx {117^0}17'\)
Muốn tính đường cao ứng với cạnh lớn nhất ta dùng công thức Hê – rông để tính diện tích tam giác và từ đó suy ra đường cao tương ứng.
\(S = \sqrt {p(p - a)(p - b)(p - c)} \) với \(p = \dfrac{1}{2}\left( {3 + 4 + 6} \right) = \dfrac{{13}}{2}\)
\(S = \sqrt {\dfrac{{13}}{2}\left( {\dfrac{{13}}{2} - 3} \right)\left( {\dfrac{{13}}{2} - 4} \right)\left( {\dfrac{{13}}{2} - 6} \right)} \)\( = \dfrac{{\sqrt {455} }}{4}\)
Ta có: \({h_c} = \dfrac{{2S}}{c} = \dfrac{{\sqrt {455} }}{{2.6}} = \dfrac{{\sqrt {455} }}{{12}}\)