a) a và b thỏa mãn hệ phương trình :
\(\left\{ {\matrix{{1 + a + b = 1} \cr {9 + 3a + b = 3} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{a + b = 0} \cr {3a + b = - 6} \cr} } \right. \Leftrightarrow\left\{ {\matrix{{a = - 3} \cr {b = 3} \cr} } \right.\)
c và d thỏa mãn hệ phương trình:
\(\left\{ {\matrix{{c + d = 1} \cr {3c + d = 3} \cr} \Leftrightarrow \left\{ {\matrix{{c = 1} \cr {d = 0} \cr} } \right.} \right.\)
b) (H.90) Ta có hai hàm số tương ứng là: y = x2 – 3x + 3 và y = x
Vậy \(S = \int\limits_1^3 {( - {x^2} + 4x - 3)dx} = {4 \over 3}\) (đơn vị diện tích)
c) V = V1 – V2 , trong đó V1 là thể tích vật thể tròn xoay sinh ra do quay hình thang ACDB quanh trục Ox , V2 là thể tích vật thể tròn xoay sinh ra do quay hình thang cong ACDB quanh trục Ox.
Ta có \({V_1} = \pi \int\limits_1^3 {{x^2}dx = {{26} \over 3}\pi } \)
\({V_2} = \pi \int\limits_1^3 {{{({x^2} - 3x + 3)}^2}dx = {{22} \over 5}\pi } \)
Vậy \(V = {{26} \over 3}\pi - {{22} \over 5}\pi = {{64} \over {15}}\pi \) (đơn vị thể tích)